Piecewise-Velocity Model for Learning Continuous-time Dynamic Node
Representations
- URL: http://arxiv.org/abs/2212.12345v1
- Date: Fri, 23 Dec 2022 13:57:56 GMT
- Title: Piecewise-Velocity Model for Learning Continuous-time Dynamic Node
Representations
- Authors: Abdulkadir \c{C}elikkanat and Nikolaos Nakis and Morten M{\o}rup
- Abstract summary: Piecewise-Veable Model (PiVeM) for representation of continuous-time dynamic networks.
We show that PiVeM can successfully represent network structure and dynamics in ultra-low two-dimensional spaces.
It outperforms relevant state-of-art methods in downstream tasks such as link prediction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Networks have become indispensable and ubiquitous structures in many fields
to model the interactions among different entities, such as friendship in
social networks or protein interactions in biological graphs. A major challenge
is to understand the structure and dynamics of these systems. Although networks
evolve through time, most existing graph representation learning methods target
only static networks. Whereas approaches have been developed for the modeling
of dynamic networks, there is a lack of efficient continuous time dynamic graph
representation learning methods that can provide accurate network
characterization and visualization in low dimensions while explicitly
accounting for prominent network characteristics such as homophily and
transitivity. In this paper, we propose the Piecewise-Velocity Model (PiVeM)
for the representation of continuous-time dynamic networks. It learns dynamic
embeddings in which the temporal evolution of nodes is approximated by
piecewise linear interpolations based on a latent distance model with piecewise
constant node-specific velocities. The model allows for analytically tractable
expressions of the associated Poisson process likelihood with scalable
inference invariant to the number of events. We further impose a scalable
Kronecker structured Gaussian Process prior to the dynamics accounting for
community structure, temporal smoothness, and disentangled (uncorrelated)
latent embedding dimensions optimally learned to characterize the network
dynamics. We show that PiVeM can successfully represent network structure and
dynamics in ultra-low two-dimensional spaces. It outperforms relevant
state-of-art methods in downstream tasks such as link prediction. In summary,
PiVeM enables easily interpretable dynamic network visualizations and
characterizations that can further improve our understanding of the intrinsic
dynamics of time-evolving networks.
Related papers
- Contrastive Representation Learning for Dynamic Link Prediction in Temporal Networks [1.9389881806157312]
We introduce a self-supervised method for learning representations of temporal networks.
We propose a recurrent message-passing neural network architecture for modeling the information flow over time-respecting paths of temporal networks.
The proposed method is tested on Enron, COLAB, and Facebook datasets.
arXiv Detail & Related papers (2024-08-22T22:50:46Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
We introduce the Recurrent Structure-reinforced Graph Transformer (RSGT), a novel framework for dynamic graph representation learning.
RSGT captures temporal node representations encoding both graph topology and evolving dynamics through a recurrent learning paradigm.
We show RSGT's superior performance in discrete dynamic graph representation learning, consistently outperforming existing methods in dynamic link prediction tasks.
arXiv Detail & Related papers (2023-04-20T04:12:50Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
We first show that ResNets fail to be meaningful dynamical in this richer sense.
We then demonstrate that neural network models can learn to represent continuous dynamical systems.
We introduce ContinuousNet as a continuous-in-depth generalization of ResNet architectures.
arXiv Detail & Related papers (2020-08-05T22:54:09Z) - Deep learning of contagion dynamics on complex networks [0.0]
We propose a complementary approach based on deep learning to build effective models of contagion dynamics on networks.
By allowing simulations on arbitrary network structures, our approach makes it possible to explore the properties of the learned dynamics beyond the training data.
Our results demonstrate how deep learning offers a new and complementary perspective to build effective models of contagion dynamics on networks.
arXiv Detail & Related papers (2020-06-09T17:18:34Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Link Prediction for Temporally Consistent Networks [6.981204218036187]
Link prediction estimates the next relationship in dynamic networks.
The use of adjacency matrix to represent dynamically evolving networks limits the ability to analytically learn from heterogeneous, sparse, or forming networks.
We propose a new method of canonically representing heterogeneous time-evolving activities as a temporally parameterized network model.
arXiv Detail & Related papers (2020-06-06T07:28:03Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
We propose a novel dynamic heterogeneous network embedding method, termed as DyHATR.
It uses hierarchical attention to learn heterogeneous information and incorporates recurrent neural networks with temporal attention to capture evolutionary patterns.
We benchmark our method on four real-world datasets for the task of link prediction.
arXiv Detail & Related papers (2020-04-01T17:16:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.