論文の概要: LAQP: Learning-based Approximate Query Processing
- arxiv url: http://arxiv.org/abs/2003.02446v1
- Date: Thu, 5 Mar 2020 06:08:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 07:34:38.247335
- Title: LAQP: Learning-based Approximate Query Processing
- Title(参考訳): LAQP:学習に基づく近似クエリ処理
- Authors: Meifan Zhang and Hongzhi Wang
- Abstract要約: 近似クエリ処理(AQP)は、迅速な応答の要求を満たす方法である。
LAQPと呼ばれる学習に基づくAQP手法を提案する。
履歴クエリから学習したエラーモデルを構築し、新しいクエリ毎にサンプリングベースの推定エラーを予測する。
- 参考スコア(独自算出の注目度): 5.249017312277057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Querying on big data is a challenging task due to the rapid growth of data
amount. Approximate query processing (AQP) is a way to meet the requirement of
fast response. In this paper, we propose a learning-based AQP method called the
LAQP. The LAQP builds an error model learned from the historical queries to
predict the sampling-based estimation error of each new query. It makes a
combination of the sampling-based AQP, the pre-computed aggregations and the
learned error model to provide high-accurate query estimations with a small
off-line sample. The experimental results indicate that our LAQP outperforms
the sampling-based AQP, the pre-aggregation-based AQP and the most recent
learning-based AQP method.
- Abstract(参考訳): ビッグデータに対するクエリは、データ量の急激な増加のため、難しい作業である。
近似クエリ処理(AQP)は、迅速な応答の要求を満たす方法である。
本稿では,LAQPと呼ばれる学習型AQP手法を提案する。
LAQPは、履歴クエリから学習したエラーモデルを構築し、新しいクエリ毎にサンプリングベースの推定誤差を予測する。
サンプリングベースのAQP、事前計算された集約、学習されたエラーモデルを組み合わせて、小さなオフラインサンプルで高精度なクエリ推定を提供する。
実験の結果, LAQPはサンプリングベースAQP, 事前集約型AQP, 最新の学習型AQPよりも優れていた。
関連論文リスト
- Effective Instruction Parsing Plugin for Complex Logical Query Answering on Knowledge Graphs [51.33342412699939]
知識グラフクエリ埋め込み(KGQE)は、不完全なKGに対する複雑な推論のために、低次元KG空間に一階論理(FOL)クエリを埋め込むことを目的としている。
近年の研究では、FOLクエリの論理的セマンティクスをよりよく捉えるために、さまざまな外部情報(エンティティタイプや関係コンテキストなど)を統合している。
コードのようなクエリ命令から遅延クエリパターンをキャプチャする効果的なクエリ命令解析(QIPP)を提案する。
論文 参考訳(メタデータ) (2024-10-27T03:18:52Z) - SPARKLE: Enhancing SPARQL Generation with Direct KG Integration in Decoding [0.46040036610482665]
本稿では、SPARQLフレームワークであるSPARKLEに、新しいエンドツーエンド自然言語を提示する。
SPARKLEは、デコーディング中に知識ベースの構造を直接活用し、クエリ生成に知識を効果的に統合する。
本稿では,SPARKLEがSimpleQuestions-Wiki上で,LCQuAD 1.0上で最高のF1スコアを獲得していることを示す。
論文 参考訳(メタデータ) (2024-06-29T06:43:11Z) - Query Performance Prediction using Relevance Judgments Generated by Large Language Models [53.97064615557883]
自動生成関連判定(QPP-GenRE)を用いたQPPフレームワークを提案する。
QPP-GenREは、QPPを独立したサブタスクに分解し、ランクリスト内の各項目の関連性を所定のクエリに予測する。
これにより、生成した関連判断を擬似ラベルとして利用して、任意のIR評価尺度を予測することができる。
論文 参考訳(メタデータ) (2024-04-01T09:33:05Z) - MeaeQ: Mount Model Extraction Attacks with Efficient Queries [6.1106195466129485]
自然言語処理(NLP)におけるモデル抽出攻撃の研究
これらの問題に対処する単純で効果的な方法であるMeaeQを提案する。
MeaeQは、クエリを少なくしながら、ベースラインよりも犠牲者モデルに高い機能的類似性を実現する。
論文 参考訳(メタデータ) (2023-10-21T16:07:16Z) - MinPrompt: Graph-based Minimal Prompt Data Augmentation for Few-shot Question Answering [64.6741991162092]
オープンドメイン質問応答のための最小限のデータ拡張フレームワークMinPromptを提案する。
我々は、生テキストをグラフ構造に変換し、異なる事実文間の接続を構築する。
次に、グラフアルゴリズムを適用して、原文のほとんどの情報をカバーするのに必要な最小限の文の集合を識別する。
同定された文サブセットに基づいてQAペアを生成し、選択した文に基づいてモデルをトレーニングし、最終モデルを得る。
論文 参考訳(メタデータ) (2023-10-08T04:44:36Z) - Toward Unsupervised Realistic Visual Question Answering [70.67698100148414]
現実的なVQA(RVQA)の問題について検討し、モデルが答えられない質問(UQ)を拒絶し、答えられる質問(AQ)に答えなければならない。
1)データセットには不整合UQが多すぎること,(2)多数の注釈付きUQがトレーニングに必要とされること,の2つの欠点を最初に指摘した。
我々は、既存のVQAデータセットのAQと約29万の人間の注釈付きUQを組み合わせた新しいテストデータセットRGQAを提案する。
これは、画像と質問をランダムにペアリングして得られる擬似UQと、それを結合する。
論文 参考訳(メタデータ) (2023-03-09T06:58:29Z) - PACIFIC: Towards Proactive Conversational Question Answering over
Tabular and Textual Data in Finance [96.06505049126345]
我々はPACIFICという新しいデータセットを提案する。既存のCQAデータセットと比較すると、PACIFICは(i)活動性、(ii)数値推論、(iii)表とテキストのハイブリッドコンテキストの3つの重要な特徴を示す。
質問生成とCQAを組み合わせたPCQA(Proactive Conversational Question Answering)に基づいて,新しいタスクを定義する。
UniPCQAはPCQAのすべてのサブタスク上でマルチタスク学習を行い、Seeq2Seqの上位$kのサンプルをクロスバリデーションすることで、マルチタスク学習におけるエラー伝搬問題を緩和するための単純なアンサンブル戦略を取り入れている。
論文 参考訳(メタデータ) (2022-10-17T08:06:56Z) - Electra: Conditional Generative Model based Predicate-Aware Query
Approximation [10.056919500568013]
ELECTRAは述語対応のAQPシステムで、多くの述語で分析スタイルのクエリに答えることができ、近似誤差ははるかに小さい。
実世界の3つのデータセットに対する4つの異なるベースラインによる評価の結果,ELECTRAはベースラインと比較して多数の述語に対して低いAQP誤差を提供することがわかった。
論文 参考訳(メタデータ) (2022-01-28T21:13:26Z) - DeepSampling: Selectivity Estimation with Predicted Error and Response
Time [7.23389716633927]
本稿では,サンプルベースAQPアルゴリズムの精度を予測するディープラーニングモデルであるDeepSamplingを提案する。
DeepSamplingは、既存の空間データベースがAQPの精度を制御するための信頼性の高いツールを提供する最初のシステムである。
論文 参考訳(メタデータ) (2020-08-16T03:23:01Z) - Single-partition adaptive Q-learning [0.0]
SPAQL(Single-Partition Adaptive Q-learning)は、モデルなしのエピソード強化学習のためのアルゴリズムである。
多数のタイムステップを持つエピソードのテストでは、適応型Qラーニング(AQL)とは異なり、SPAQLにはスケーリングに問題はないことが示されている。
SPAQLはAQLよりも高いサンプリング効率を持つため、効率的なモデルフリーなRLメソッドの分野に関連性がある、と我々は主張する。
論文 参考訳(メタデータ) (2020-07-14T00:03:25Z) - Template-Based Question Generation from Retrieved Sentences for Improved
Unsupervised Question Answering [98.48363619128108]
擬似学習データを用いてQAモデルを訓練するための教師なしアプローチを提案する。
関連した検索文に簡単なテンプレートを適用してQA学習のための質問を生成すると、元の文脈文よりも、下流QAのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2020-04-24T17:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。