Efficient and Effective Similar Subtrajectory Search with Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2003.02542v2
- Date: Tue, 14 Jul 2020 07:34:08 GMT
- Title: Efficient and Effective Similar Subtrajectory Search with Deep
Reinforcement Learning
- Authors: Zheng Wang, Cheng Long, Gao Cong, Yiding Liu
- Abstract summary: We study the SimSub problem and develop a suite of algorithms including both exact and approximate ones.
Among those approximate algorithms, two that are based on deep reinforcement learning stand out and outperform those non-learning based algorithms in terms of effectiveness and efficiency.
We conduct experiments on real-world trajectory datasets, which verify the effectiveness and efficiency of the proposed algorithms.
- Score: 39.40996178862515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Similar trajectory search is a fundamental problem and has been well studied
over the past two decades. However, the similar subtrajectory search (SimSub)
problem, aiming to return a portion of a trajectory (i.e., a subtrajectory)
which is the most similar to a query trajectory, has been mostly disregarded
despite that it could capture trajectory similarity in a finer-grained way and
many applications take subtrajectories as basic units for analysis. In this
paper, we study the SimSub problem and develop a suite of algorithms including
both exact and approximate ones. Among those approximate algorithms, two that
are based on deep reinforcement learning stand out and outperform those
non-learning based algorithms in terms of effectiveness and efficiency. We
conduct experiments on real-world trajectory datasets, which verify the
effectiveness and efficiency of the proposed algorithms.
Related papers
- Simple Ingredients for Offline Reinforcement Learning [86.1988266277766]
offline reinforcement learning algorithms have proven effective on datasets highly connected to the target downstream task.
We show that existing methods struggle with diverse data: their performance considerably deteriorates as data collected for related but different tasks is simply added to the offline buffer.
We show that scale, more than algorithmic considerations, is the key factor influencing performance.
arXiv Detail & Related papers (2024-03-19T18:57:53Z) - Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
We propose to learn an ensemble by leveraging existing methods in a relation-aware manner.
exploring these semantics using relation-aware ensemble leads to a much larger search space than general ensemble methods.
We propose a divide-search-combine algorithm RelEns-DSC that searches the relation-wise ensemble weights independently.
arXiv Detail & Related papers (2023-10-13T07:40:12Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Dual Algorithmic Reasoning [9.701208207491879]
We propose to learn algorithms by exploiting duality of the underlying algorithmic problem.
We demonstrate that simultaneously learning the dual definition of these optimisation problems in algorithmic learning allows for better learning.
We then validate the real-world utility of our dual algorithmic reasoner by deploying it on a challenging brain vessel classification task.
arXiv Detail & Related papers (2023-02-09T08:46:23Z) - Contrastive Trajectory Similarity Learning with Dual-Feature Attention [24.445998309807965]
Tray similarity measures act as query predicates in trajectory databases.
We propose a contrastive learning-based trajectory modelling method named TrajCL.
TrajCL is consistently and significantly more accurate and faster than the state-of-the-art trajectory similarity measures.
arXiv Detail & Related papers (2022-10-11T05:25:14Z) - The CLRS Algorithmic Reasoning Benchmark [28.789225199559834]
Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.
We propose the CLRS Algorithmic Reasoning Benchmark, covering classical algorithms from the Introduction to Algorithms textbook.
Our benchmark spans a variety of algorithmic reasoning procedures, including sorting, searching, dynamic programming, graph algorithms, string algorithms and geometric algorithms.
arXiv Detail & Related papers (2022-05-31T09:56:44Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Performance Analysis of Fractional Learning Algorithms [32.21539962359158]
It is unclear whether the proclaimed superiority over conventional algorithms is well-grounded or is a myth as their performance has never been extensively analyzed.
In this article, a rigorous analysis of fractional variants of the least mean squares and steepest descent algorithms is performed.
Their origins and consequences on the performance of the learning algorithms are discussed and swift ready-witted remedies are proposed.
arXiv Detail & Related papers (2021-10-11T12:06:44Z) - A Pragmatic Look at Deep Imitation Learning [0.3626013617212666]
We re-implement 6 different adversarial imitation learning algorithms.
We evaluate them on a widely-used expert trajectory dataset.
GAIL consistently performs well across a range of sample sizes.
arXiv Detail & Related papers (2021-08-04T06:33:10Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.