The CLRS Algorithmic Reasoning Benchmark
- URL: http://arxiv.org/abs/2205.15659v1
- Date: Tue, 31 May 2022 09:56:44 GMT
- Title: The CLRS Algorithmic Reasoning Benchmark
- Authors: Petar Veli\v{c}kovi\'c, Adri\`a Puigdom\`enech Badia, David Budden,
Razvan Pascanu, Andrea Banino, Misha Dashevskiy, Raia Hadsell, Charles
Blundell
- Abstract summary: Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.
We propose the CLRS Algorithmic Reasoning Benchmark, covering classical algorithms from the Introduction to Algorithms textbook.
Our benchmark spans a variety of algorithmic reasoning procedures, including sorting, searching, dynamic programming, graph algorithms, string algorithms and geometric algorithms.
- Score: 28.789225199559834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning representations of algorithms is an emerging area of machine
learning, seeking to bridge concepts from neural networks with classical
algorithms. Several important works have investigated whether neural networks
can effectively reason like algorithms, typically by learning to execute them.
The common trend in the area, however, is to generate targeted kinds of
algorithmic data to evaluate specific hypotheses, making results hard to
transfer across publications, and increasing the barrier of entry. To
consolidate progress and work towards unified evaluation, we propose the CLRS
Algorithmic Reasoning Benchmark, covering classical algorithms from the
Introduction to Algorithms textbook. Our benchmark spans a variety of
algorithmic reasoning procedures, including sorting, searching, dynamic
programming, graph algorithms, string algorithms and geometric algorithms. We
perform extensive experiments to demonstrate how several popular algorithmic
reasoning baselines perform on these tasks, and consequently, highlight links
to several open challenges. Our library is readily available at
https://github.com/deepmind/clrs.
Related papers
- From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models [63.188607839223046]
This survey focuses on the benefits of scaling compute during inference.
We explore three areas under a unified mathematical formalism: token-level generation algorithms, meta-generation algorithms, and efficient generation.
arXiv Detail & Related papers (2024-06-24T17:45:59Z) - The CLRS-Text Algorithmic Reasoning Language Benchmark [48.45201665463275]
CLRS-Text is a textual version of the CLRS benchmark.
CLRS-Text is capable of procedurally generating trace data for thirty diverse, challenging algorithmic tasks.
We fine-tune and evaluate various LMs as generalist executors on this benchmark.
arXiv Detail & Related papers (2024-06-06T16:29:25Z) - The Clock and the Pizza: Two Stories in Mechanistic Explanation of
Neural Networks [59.26515696183751]
We show that algorithm discovery in neural networks is sometimes more complex.
We show that even simple learning problems can admit a surprising diversity of solutions.
arXiv Detail & Related papers (2023-06-30T17:59:13Z) - Neural Algorithmic Reasoning Without Intermediate Supervision [21.852775399735005]
We focus on learning neural algorithmic reasoning only from the input-output pairs without appealing to the intermediate supervision.
We build a self-supervised objective that can regularise intermediate computations of the model without access to the algorithm trajectory.
We demonstrate that our approach is competitive to its trajectory-supervised counterpart on tasks from the CLRSic Algorithmic Reasoning Benchmark.
arXiv Detail & Related papers (2023-06-23T09:57:44Z) - A Gold Standard Dataset for the Reviewer Assignment Problem [117.59690218507565]
"Similarity score" is a numerical estimate of the expertise of a reviewer in reviewing a paper.
Our dataset consists of 477 self-reported expertise scores provided by 58 researchers.
For the task of ordering two papers in terms of their relevance for a reviewer, the error rates range from 12%-30% in easy cases to 36%-43% in hard cases.
arXiv Detail & Related papers (2023-03-23T16:15:03Z) - Dual Algorithmic Reasoning [9.701208207491879]
We propose to learn algorithms by exploiting duality of the underlying algorithmic problem.
We demonstrate that simultaneously learning the dual definition of these optimisation problems in algorithmic learning allows for better learning.
We then validate the real-world utility of our dual algorithmic reasoner by deploying it on a challenging brain vessel classification task.
arXiv Detail & Related papers (2023-02-09T08:46:23Z) - Learning with Differentiable Algorithms [6.47243430672461]
This thesis explores combining classic algorithms and machine learning systems like neural networks.
The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm.
In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable sorting gates, and differentiable logic gate networks.
arXiv Detail & Related papers (2022-09-01T17:30:00Z) - How to transfer algorithmic reasoning knowledge to learn new algorithms? [23.335939830754747]
We investigate how we can use algorithms for which we have access to the execution trace to learn to solve similar tasks for which we do not.
We create a dataset including 9 algorithms and 3 different graph types.
We validate this empirically and show how instead multi-task learning can be used to achieve the transfer of algorithmic reasoning knowledge.
arXiv Detail & Related papers (2021-10-26T22:14:47Z) - Identifying Co-Adaptation of Algorithmic and Implementational
Innovations in Deep Reinforcement Learning: A Taxonomy and Case Study of
Inference-based Algorithms [15.338931971492288]
We focus on a series of inference-based actor-critic algorithms to decouple their algorithmic innovations and implementation decisions.
We identify substantial performance drops whenever implementation details are mismatched for algorithmic choices.
Results show which implementation details are co-adapted and co-evolved with algorithms.
arXiv Detail & Related papers (2021-03-31T17:55:20Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.