論文の概要: On the performance of deep learning models for time series
classification in streaming
- arxiv url: http://arxiv.org/abs/2003.02544v2
- Date: Fri, 3 Apr 2020 09:55:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 06:22:51.917854
- Title: On the performance of deep learning models for time series
classification in streaming
- Title(参考訳): ストリーミングにおける時系列分類のためのディープラーニングモデルの性能について
- Authors: Pedro Lara-Ben\'itez, Manuel Carranza-Garc\'ia, Francisco
Mart\'inez-\'Alvarez and Jos\'e C. Riquelme
- Abstract要約: この研究は、データストリーミング分類のための様々なタイプのディープアーキテクチャのパフォーマンスを評価することである。
複数の時系列データセット上で,多層パーセプトロン,リカレント,畳み込み,時間的畳み込みニューラルネットワークなどのモデルを評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Processing data streams arriving at high speed requires the development of
models that can provide fast and accurate predictions. Although deep neural
networks are the state-of-the-art for many machine learning tasks, their
performance in real-time data streaming scenarios is a research area that has
not yet been fully addressed. Nevertheless, there have been recent efforts to
adapt complex deep learning models for streaming tasks by reducing their
processing rate. The design of the asynchronous dual-pipeline deep learning
framework allows to predict over incoming instances and update the model
simultaneously using two separate layers. The aim of this work is to assess the
performance of different types of deep architectures for data streaming
classification using this framework. We evaluate models such as multi-layer
perceptrons, recurrent, convolutional and temporal convolutional neural
networks over several time-series datasets that are simulated as streams. The
obtained results indicate that convolutional architectures achieve a higher
performance in terms of accuracy and efficiency.
- Abstract(参考訳): 高速に到達したデータストリームを処理するには、高速で正確な予測を提供するモデルの開発が必要だ。
ディープニューラルネットワークは多くの機械学習タスクの最先端技術であるが、リアルタイムデータストリーミングシナリオのパフォーマンスは、まだ完全に対処されていない研究領域である。
それでも、処理速度を下げることで、複雑なディープラーニングモデルをストリーミングタスクに適応させる取り組みが近年行われている。
非同期のデュアルパイプラインディープラーニングフレームワークの設計により、入ってくるインスタンスを予測し、2つの別々のレイヤを使って同時にモデルを更新することができる。
本研究の目的は、このフレームワークを用いてデータストリーミング分類のための様々なタイプのディープアーキテクチャの性能を評価することである。
ストリームとしてシミュレーションされた複数の時系列データセット上で,多層パーセプトロン,リカレント,畳み込み,時間畳み込みニューラルネットワークなどのモデルを評価する。
その結果,畳み込み型アーキテクチャは精度と効率の面で高い性能が得られることがわかった。
関連論文リスト
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Temporal Convolution Domain Adaptation Learning for Crops Growth
Prediction [5.966652553573454]
我々は、限られた作物データを用いて、作物の成長曲線を予測するために、ドメイン適応学習に基づく革新的なネットワークアーキテクチャを構築した。
私たちは、時間的畳み込みフィルタをバックボーンとして使用し、ドメイン適応ネットワークアーキテクチャを構築しました。
その結果,提案した時間的畳み込みに基づくネットワークアーキテクチャは,精度だけでなく,モデルサイズや収束率においても,すべてのベンチマークより優れていた。
論文 参考訳(メタデータ) (2022-02-24T14:22:36Z) - How Well Do Sparse Imagenet Models Transfer? [75.98123173154605]
転送学習は、大規模な"上流"データセットで事前訓練されたモデルが、"下流"データセットで良い結果を得るために適応される古典的なパラダイムである。
本研究では、ImageNetデータセットでトレーニングされた畳み込みニューラルネットワーク(CNN)のコンテキストにおいて、この現象を詳細に調査する。
スパースモデルでは, 高空間であっても, 高密度モデルの転送性能にマッチしたり, 性能に優れることを示す。
論文 参考訳(メタデータ) (2021-11-26T11:58:51Z) - Spatio-Temporal Recurrent Networks for Event-Based Optical Flow
Estimation [47.984368369734995]
本稿では,イベントベース光フロー推定のためのニューラルネットアーキテクチャを提案する。
このネットワークは、Multi-Vehicle Stereo Event Cameraデータセット上で、セルフ教師付き学習でエンドツーエンドにトレーニングされている。
既存の最先端の手法を大きなマージンで上回る結果が得られた。
論文 参考訳(メタデータ) (2021-09-10T13:37:37Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
本研究は,空間的次元と時間的次元に細かな注意を払っている新しいスケルトンに基づく人間行動認識モデルを提案する。
実験により、トレーニング可能なパラメータをはるかに少なくし、トレーニングや推論の高速化を図りながら、モデルが同等のパフォーマンスを達成できることが示されている。
論文 参考訳(メタデータ) (2021-07-15T02:53:11Z) - An Experimental Review on Deep Learning Architectures for Time Series
Forecasting [0.0]
時系列予測のための最も広範な深層学習研究を提供する。
すべての研究モデルの中で、結果は、長期短期記憶(LSTM)と畳み込みネットワーク(CNN)が最良の代替手段であることを示しています。
CNNは、異なるパラメータ設定の下で結果の変動が少なく、比較性能を達成し、効率も向上します。
論文 参考訳(メタデータ) (2021-03-22T17:58:36Z) - Improving Neural Networks for Time Series Forecasting using Data
Augmentation and AutoML [0.0]
本稿では,ニューラルネットワークの性能を大幅に向上させるデータ拡張手法を提案する。
これは、Neural Architecture Searchのような自動機械学習技術を組み合わせることで、与えられた時系列に最適なニューラルネットワークを見つけるのに役立つことを示している。
論文 参考訳(メタデータ) (2021-03-02T19:20:49Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Improved Predictive Deep Temporal Neural Networks with Trend Filtering [22.352437268596674]
本稿では,ディープニューラルネットワークとトレンドフィルタリングに基づく新しい予測フレームワークを提案する。
我々は,学習データをトレンドフィルタリングによって時間的に処理した場合,深部時相ニューラルネットワークの予測性能が向上することを明らかにする。
論文 参考訳(メタデータ) (2020-10-16T08:29:36Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。