On the performance of deep learning models for time series
classification in streaming
- URL: http://arxiv.org/abs/2003.02544v2
- Date: Fri, 3 Apr 2020 09:55:31 GMT
- Title: On the performance of deep learning models for time series
classification in streaming
- Authors: Pedro Lara-Ben\'itez, Manuel Carranza-Garc\'ia, Francisco
Mart\'inez-\'Alvarez and Jos\'e C. Riquelme
- Abstract summary: This work is to assess the performance of different types of deep architectures for data streaming classification.
We evaluate models such as multi-layer perceptrons, recurrent, convolutional and temporal convolutional neural networks over several time-series datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Processing data streams arriving at high speed requires the development of
models that can provide fast and accurate predictions. Although deep neural
networks are the state-of-the-art for many machine learning tasks, their
performance in real-time data streaming scenarios is a research area that has
not yet been fully addressed. Nevertheless, there have been recent efforts to
adapt complex deep learning models for streaming tasks by reducing their
processing rate. The design of the asynchronous dual-pipeline deep learning
framework allows to predict over incoming instances and update the model
simultaneously using two separate layers. The aim of this work is to assess the
performance of different types of deep architectures for data streaming
classification using this framework. We evaluate models such as multi-layer
perceptrons, recurrent, convolutional and temporal convolutional neural
networks over several time-series datasets that are simulated as streams. The
obtained results indicate that convolutional architectures achieve a higher
performance in terms of accuracy and efficiency.
Related papers
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Temporal Convolution Domain Adaptation Learning for Crops Growth
Prediction [5.966652553573454]
We construct an innovative network architecture based on domain adaptation learning to predict crops growth curves with limited available crop data.
We are the first to use the temporal convolution filters as the backbone to construct a domain adaptation network architecture.
Results show that the proposed temporal convolution-based network architecture outperforms all benchmarks not only in accuracy but also in model size and convergence rate.
arXiv Detail & Related papers (2022-02-24T14:22:36Z) - How Well Do Sparse Imagenet Models Transfer? [75.98123173154605]
Transfer learning is a classic paradigm by which models pretrained on large "upstream" datasets are adapted to yield good results on "downstream" datasets.
In this work, we perform an in-depth investigation of this phenomenon in the context of convolutional neural networks (CNNs) trained on the ImageNet dataset.
We show that sparse models can match or even outperform the transfer performance of dense models, even at high sparsities.
arXiv Detail & Related papers (2021-11-26T11:58:51Z) - Spatio-Temporal Recurrent Networks for Event-Based Optical Flow
Estimation [47.984368369734995]
We introduce a novel recurrent encoding-decoding neural network architecture for event-based optical flow estimation.
The network is end-to-end trained with self-supervised learning on the Multi-Vehicle Stereo Event Camera dataset.
We have shown that it outperforms all the existing state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-09-10T13:37:37Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - An Experimental Review on Deep Learning Architectures for Time Series
Forecasting [0.0]
We provide the most extensive deep learning study for time series forecasting.
Among all studied models, the results show that long short-term memory (LSTM) and convolutional networks (CNN) are the best alternatives.
CNNs achieve comparable performance with less variability of results under different parameter configurations, while also being more efficient.
arXiv Detail & Related papers (2021-03-22T17:58:36Z) - Improving Neural Networks for Time Series Forecasting using Data
Augmentation and AutoML [0.0]
This paper presents an easy to implement data augmentation method to significantly improve the performance of neural networks.
It shows that data augmentation, when paired Automated Machine Learning techniques such as Neural Architecture Search, can help to find the best neural architecture for a given time series.
arXiv Detail & Related papers (2021-03-02T19:20:49Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Improved Predictive Deep Temporal Neural Networks with Trend Filtering [22.352437268596674]
We propose a new prediction framework based on deep neural networks and a trend filtering.
We reveal that the predictive performance of deep temporal neural networks improves when the training data is temporally processed by a trend filtering.
arXiv Detail & Related papers (2020-10-16T08:29:36Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.