Improved Predictive Deep Temporal Neural Networks with Trend Filtering
- URL: http://arxiv.org/abs/2010.08234v1
- Date: Fri, 16 Oct 2020 08:29:36 GMT
- Title: Improved Predictive Deep Temporal Neural Networks with Trend Filtering
- Authors: Youngjin Park, Deokjun Eom, Byoungki Seo, Jaesik Choi
- Abstract summary: We propose a new prediction framework based on deep neural networks and a trend filtering.
We reveal that the predictive performance of deep temporal neural networks improves when the training data is temporally processed by a trend filtering.
- Score: 22.352437268596674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting with multivariate time series, which aims to predict future
values given previous and current several univariate time series data, has been
studied for decades, with one example being ARIMA. Because it is difficult to
measure the extent to which noise is mixed with informative signals within
rapidly fluctuating financial time series data, designing a good predictive
model is not a simple task. Recently, many researchers have become interested
in recurrent neural networks and attention-based neural networks, applying them
in financial forecasting. There have been many attempts to utilize these
methods for the capturing of long-term temporal dependencies and to select more
important features in multivariate time series data in order to make accurate
predictions. In this paper, we propose a new prediction framework based on deep
neural networks and a trend filtering, which converts noisy time series data
into a piecewise linear fashion. We reveal that the predictive performance of
deep temporal neural networks improves when the training data is temporally
processed by a trend filtering. To verify the effect of our framework, three
deep temporal neural networks, state of the art models for predictions in time
series finance data, are used and compared with models that contain trend
filtering as an input feature. Extensive experiments on real-world multivariate
time series data show that the proposed method is effective and significantly
better than existing baseline methods.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - FocusLearn: Fully-Interpretable, High-Performance Modular Neural Networks for Time Series [0.3277163122167434]
This paper proposes a novel modular neural network model for time series prediction that is interpretable by construction.
A recurrent neural network learns the temporal dependencies in the data while an attention-based feature selection component selects the most relevant features.
A modular deep network is trained from the selected features independently to show the users how features influence outcomes, making the model interpretable.
arXiv Detail & Related papers (2023-11-28T14:51:06Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction [13.521272923545409]
We present a novel Continuous Learning-based Unsupervised Recurrent Spiking Neural Network Model (CLURSNN)
CLURSNN makes online predictions by reconstructing the underlying dynamical system using Random Delay Embedding.
We show that the proposed online time series prediction methodology outperforms state-of-the-art DNN models when predicting an evolving Lorenz63 dynamical system.
arXiv Detail & Related papers (2023-04-10T16:18:37Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Multi-head Temporal Attention-Augmented Bilinear Network for Financial
time series prediction [77.57991021445959]
We propose a neural layer based on the ideas of temporal attention and multi-head attention to extend the capability of the underlying neural network.
The effectiveness of our approach is validated using large-scale limit-order book market data.
arXiv Detail & Related papers (2022-01-14T14:02:19Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
We propose a novel data-driven normalization method for deep neural networks that handle high-frequency financial time-series.
The proposed normalization scheme takes into account the bimodal characteristic of financial time-series.
Our experiments, conducted with state-of-the-arts neural networks and high-frequency data, show significant improvements over other normalization techniques.
arXiv Detail & Related papers (2021-09-01T07:52:03Z) - Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction [9.449017120452675]
Time series is a special type of sequence data, a set of observations collected at even intervals of time and ordered chronologically.
Existing deep learning techniques use generic sequence models for time series analysis, which ignore some of its unique properties.
We propose a novel neural network architecture and apply it for the time series forecasting problem, wherein we conduct sample convolution and interaction at multiple resolutions for temporal modeling.
arXiv Detail & Related papers (2021-06-17T08:15:04Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - The Effectiveness of Discretization in Forecasting: An Empirical Study
on Neural Time Series Models [15.281725756608981]
We investigate the effect of data input and output transformations on the predictive performance of neural forecasting architectures.
We find that binning almost always improves performance compared to using normalized real-valued inputs.
arXiv Detail & Related papers (2020-05-20T15:09:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.