論文の概要: Metric-Based Imitation Learning Between Two Dissimilar Anthropomorphic
Robotic Arms
- arxiv url: http://arxiv.org/abs/2003.02638v1
- Date: Tue, 25 Feb 2020 19:47:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 21:29:24.684967
- Title: Metric-Based Imitation Learning Between Two Dissimilar Anthropomorphic
Robotic Arms
- Title(参考訳): 2つの異なる擬人化ロボットアーム間の計量に基づく模倣学習
- Authors: Marcus Ebner von Eschenbach, Binyamin Manela, Jan Peters, Armin Biess
- Abstract要約: 模倣学習における大きな課題の1つは、対応問題である。
異種エンボディメント間の距離測定を導入する。
この尺度は, 実施形態の類似性を記述し, 遠隔操作による模倣政策の学習に適していることが判明した。
- 参考スコア(独自算出の注目度): 29.08134072341867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of autonomous robotic systems that can learn from human
demonstrations to imitate a desired behavior - rather than being manually
programmed - has huge technological potential. One major challenge in imitation
learning is the correspondence problem: how to establish corresponding states
and actions between expert and learner, when the embodiments of the agents are
different (morphology, dynamics, degrees of freedom, etc.). Many existing
approaches in imitation learning circumvent the correspondence problem, for
example, kinesthetic teaching or teleoperation, which are performed on the
robot. In this work we explicitly address the correspondence problem by
introducing a distance measure between dissimilar embodiments. This measure is
then used as a loss function for static pose imitation and as a feedback signal
within a model-free deep reinforcement learning framework for dynamic movement
imitation between two anthropomorphic robotic arms in simulation. We find that
the measure is well suited for describing the similarity between embodiments
and for learning imitation policies by distance minimization.
- Abstract(参考訳): 人間のデモから学び、手動でプログラムされるのではなく、望ましい振る舞いを模倣する自律ロボットシステムの開発には、大きな技術的ポテンシャルがある。
模倣学習における大きな課題の1つは対応問題である: エージェントの具体化が異なる場合(形態学、ダイナミクス、自由度など)、専門家と学習者の間で対応する状態と行動を確立する方法。
模倣学習における既存の多くのアプローチは、ロボット上で実行される体美教育や遠隔操作などの対応問題を回避している。
本研究では,類似した実施形態間の距離測度を導入することで,対応問題に明示的に対処する。
この尺度は、静的ポーズ模倣の損失関数として、またシミュレーションにおいて2つの擬人化ロボットアーム間の動的運動模倣のためのモデル自由深部強化学習フレームワーク内のフィードバック信号として使用される。
この尺度は,実施形態の類似性や距離最小化による模倣政策の学習に適していることが判明した。
関連論文リスト
- DiffGen: Robot Demonstration Generation via Differentiable Physics Simulation, Differentiable Rendering, and Vision-Language Model [72.66465487508556]
DiffGenは、微分可能な物理シミュレーション、微分可能なレンダリング、ビジョン言語モデルを統合する新しいフレームワークである。
言語命令の埋め込みとシミュレートされた観察の埋め込みとの距離を最小化することにより、現実的なロボットデモを生成することができる。
実験によると、DiffGenを使えば、人間の努力やトレーニング時間を最小限に抑えて、ロボットデータを効率よく、効果的に生成できる。
論文 参考訳(メタデータ) (2024-05-12T15:38:17Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
住所推定は、社会ロボットが人間とスムーズに対話するために必要なスキルである。
人間の知覚スキルにインスパイアされたディープラーニングモデルは、iCubロボットに設計、訓練、デプロイされる。
本研究では,人間-ロボットのリアルタイムインタラクションにおいて,そのような実装の手順とモデルの性能について述べる。
論文 参考訳(メタデータ) (2023-11-09T13:01:21Z) - DiAReL: Reinforcement Learning with Disturbance Awareness for Robust
Sim2Real Policy Transfer in Robot Control [0.0]
遅延マルコフ決定プロセスは、最近コミットされたアクションの有限時間ウィンドウでエージェントの状態空間を拡大することでマルコフ特性を満たす。
本稿では,遅延した環境下での乱れ増進型マルコフ決定プロセスを導入し,政治強化学習アルゴリズムのトレーニングにおける乱れ推定を取り入れた新しい表現法を提案する。
論文 参考訳(メタデータ) (2023-06-15T10:11:38Z) - Universal Morphology Control via Contextual Modulation [52.742056836818136]
異なるロボット形態をまたいだ普遍的なポリシーの学習は、継続的な制御における学習効率と一般化を著しく向上させることができる。
既存の手法では、グラフニューラルネットワークやトランスフォーマーを使用して、異種状態と異なる形態のアクション空間を処理する。
本稿では,この依存関係を文脈変調によりモデル化する階層型アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-22T00:04:12Z) - Navigating to Objects in the Real World [76.1517654037993]
本稿では,古典的,モジュール的,エンド・ツー・エンドの学習手法と比較した,意味的視覚ナビゲーション手法に関する大規模な実証的研究について述べる。
モジュラー学習は実世界ではうまく機能し、90%の成功率に達しています。
対照的に、エンド・ツー・エンドの学習は、シミュレーションと現実の間の画像領域の差が大きいため、77%のシミュレーションから23%の実際の成功率へと低下する。
論文 参考訳(メタデータ) (2022-12-02T01:10:47Z) - Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single
Demonstration [8.57914821832517]
視覚的模倣学習のためのシンプルな新しい手法を導入し,新しいロボット操作タスクを1人の人間による実演から学習できるようにする。
提案手法は、状態推定問題として模倣学習をモデル化し、状態がエンドエフェクタのポーズとして定義される。
テスト時、エンドエフェクタは線形経路を通って推定状態に移動し、元のデモのエンドエフェクタ速度を単に再生する。
論文 参考訳(メタデータ) (2021-05-13T16:36:55Z) - Learning to Shift Attention for Motion Generation [55.61994201686024]
ロボット学習を用いた動作生成の課題の1つは、人間のデモが1つのタスククエリに対して複数のモードを持つ分布に従うことである。
以前のアプローチでは、すべてのモードをキャプチャできなかったり、デモの平均モードを取得できないため、無効なトラジェクトリを生成する傾向があった。
この問題を克服する外挿能力を有するモーション生成モデルを提案する。
論文 参考訳(メタデータ) (2021-02-24T09:07:52Z) - Learning Cross-Domain Correspondence for Control with Dynamics
Cycle-Consistency [60.39133304370604]
サイクル一貫性制約を用いて2つのドメインで動的ロボットの挙動を調整することを学ぶ。
本フレームワークは,実ロボットアームの無補間単眼映像とシミュレーションアームの動的状態動作軌跡をペアデータなしで一致させることができる。
論文 参考訳(メタデータ) (2020-12-17T18:22:25Z) - Robotic self-representation improves manipulation skills and transfer
learning [14.863872352905629]
我々は,多感覚情報から,身体スキーマと周辺空間の表現を符号化する双方向行動効果関連を学習するモデルを開発する。
本手法は,ノイズ条件下での学習に基づく問題解決を著しく安定化し,ロボット操作スキルの伝達学習を改善することを実証する。
論文 参考訳(メタデータ) (2020-11-13T16:04:58Z) - Language-Conditioned Imitation Learning for Robot Manipulation Tasks [39.40937105264774]
本研究では,非構造化自然言語を模倣学習に組み込む手法を提案する。
訓練時には、専門家は、基礎となる意図を説明するために、言語記述とともにデモンストレーションを行うことができる。
トレーニングプロセスはこれらの2つのモードを相互に関連付け、言語、知覚、動きの相関を符号化する。
結果として得られた言語条件のvisuomotorポリシーは、実行時に新しいヒューマンコマンドと命令で条件付けできる。
論文 参考訳(メタデータ) (2020-10-22T21:49:08Z) - ContactNets: Learning Discontinuous Contact Dynamics with Smooth,
Implicit Representations [4.8986598953553555]
本手法は,物体間符号距離と接触フレームジャコビアンのパラメータ化を学習する。
提案手法は,60秒間の実世界のデータを用いて,現実的な影響,非ペネティフィケーション,スティクションを予測できる。
論文 参考訳(メタデータ) (2020-09-23T14:51:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。