Overlapping two standing-waves in a microcavity for a multi-atom photon
interface
- URL: http://arxiv.org/abs/2003.02731v1
- Date: Thu, 5 Mar 2020 15:59:11 GMT
- Title: Overlapping two standing-waves in a microcavity for a multi-atom photon
interface
- Authors: S\'ebastien Garcia, Francesco Ferri, Jakob Reichel, and Romain Long
- Abstract summary: We develop a light-matter interface enabling strong and uniform coupling between a chain of cold atoms and photons of an optical cavity.
This interface is a fiber Fabry-Perot cavity doubly resonant for both the wavelength of the atomic transition and for a geometrically commensurate red-detuned intracavity trapping lattice.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a light-matter interface enabling strong and uniform coupling
between a chain of cold atoms and photons of an optical cavity. This interface
is a fiber Fabry-Perot cavity, doubly resonant for both the wavelength of the
atomic transition and for a geometrically commensurate red-detuned intracavity
trapping lattice. Fulfilling the condition of a strong and uniform atom-photon
coupling requires optimization of the spatial overlap between the two standing
waves in the cavity. In a strong-coupling cavity, where the mode waists and
Rayleigh range are small, we derive the expression of the optimal trapping
wavelength taking into account the Gouy phase. The main parameter controlling
the overlap of the standing waves is the relative phase shift at the reflection
on the cavity mirrors between the two wavelengths, for which we derive the
optimal value. We have built a microcavity optimized according to these
results, employing custom-made mirrors with engineered reflection phase for
both wavelengths. We present a method to measure with high precision the
relative phase shift at reflection, which allows us to determine the spatial
overlap of the two modes in this cavity.
Related papers
- Controlling photons by phonons via giant atom in a waveguide QED setup [9.645624468000271]
We investigate the single photon scattering in a phonon-photon hybrid system in the waveguide QED scheme.
Our study paves the way for the potential application of giant atoms in the hybrid system.
arXiv Detail & Related papers (2023-06-30T07:36:57Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Wavelength-tunable open double-microcavity to enhance two closely spaced
optical transitions [0.0]
Microcavities have long been recognized as indispensable elements in quantum photonic research.
A more advanced double-cavity structure introduces new and interesting possibilities.
We report on the simultaneous resonance tuning of the exciton and biexciton transition of a semiconductor quantum dot.
arXiv Detail & Related papers (2022-08-31T12:11:17Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Bosonic pair production and squeezing for optical phase measurements in
long-lived dipoles coupled to a cavity [0.0]
Entanglement between atoms, generated by the exchange of virtual photons through a common cavity mode, grows exponentially fast.
We propose to exploit this for quantum-enhanced sensing of an optical phase (common and differential between two ensembles)
Our proposal can open unique opportunities for the observation of continuous variable entanglement in atomic systems and associated applications in next-generation optical atomic clocks.
arXiv Detail & Related papers (2022-04-27T17:39:08Z) - Floquet Engineering of Non-Equilibrium Superradiance [0.0]
We show the emergence of a non-equilibrium superradiant phase in the dissipative Rabi-Dicke model.
This phase is characterized by a photonic steady state that oscillates with a frequency close to the cavity frequency.
We propose to use this Floquet-assisted superradiant phase to obtain controllable optical gain for a laser-like operation.
arXiv Detail & Related papers (2022-03-14T18:42:32Z) - Engineering symmetry-selective couplings of a superconducting artificial
molecule to microwave waveguides [0.0]
We demonstrate a novel coupling scheme between an artificial molecule comprising two identical, strongly coupled transmon qubits, and two microwave waveguides.
We show that this coupling arrangement makes it possible to straightforwardly generate spatially-separated Bell states propagating across the waveguides.
We envisage further applications to quantum thermodynamics, microwave photodetection, and photon-photon gates.
arXiv Detail & Related papers (2022-02-24T17:16:11Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Multimode-polariton superradiance via Floquet engineering [55.41644538483948]
We consider an ensemble of ultracold bosonic atoms within a near-planar cavity, driven by a far detuned laser.
We show that a strong, dispersive atom-photon coupling can be reached for many transverse cavity modes at once.
The resulting Floquet polaritons involve a superposition of a set of cavity modes with a density of excitation of the atomic cloud.
arXiv Detail & Related papers (2020-11-24T19:00:04Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.