Hyperentanglement in structured quantum light
- URL: http://arxiv.org/abs/2006.01845v1
- Date: Tue, 2 Jun 2020 18:00:04 GMT
- Title: Hyperentanglement in structured quantum light
- Authors: Francesco Graffitti, Vincenzo D'Ambrosio, Massimiliano Proietti,
Joseph Ho, Bruno Piccirillo, Corrado de Lisio, Lorenzo Marrucci, Alessandro
Fedrizzi
- Abstract summary: Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
- Score: 50.591267188664666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement in high-dimensional quantum systems, where one or more degrees
of freedom of light are involved, offers increased information capacities and
enables new quantum protocols. Here, we demonstrate a functional source of
high-dimensional, noise-resilient hyperentangled states encoded in
time-frequency and vector-vortex structured modes, which in turn carry
single-particle entanglement between polarisation and orbital angular momentum.
Pairing nonlinearity-engineered parametric downconversion in an interferometric
scheme with spin-to-orbital-angular-momentum conversion, we generate highly
entangled photon pairs at telecom wavelength that we characterise via
two-photon interference and quantum state tomography, achieving near-unity
visibilities and fidelities. While hyperentanglement has been demonstrated
before in photonic qubits, this is the first instance of such a rich
entanglement structure involving spectrally and spatially structured light,
where three different forms of entanglement coexist in the same biphoton state.
Related papers
- Tunable generation of spatial entanglement in nonlinear waveguide arrays [0.0]
spatially entangled photon pairs based on parametric down-conversion in AlGaAs nonlinear waveguides arrays.
We use a double-pump configuration to engineer the output quantum state and implement various types of spatial correlations.
This demonstration, at room temperature and telecom wavelength, illustrates the potential of continuously-coupled systems.
arXiv Detail & Related papers (2024-05-13T20:55:54Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Dimensional crossover in self-organised super-radiant phases of ultra
cold atoms inside a cavity [0.0]
We consider a condensate of ultra cold bosonic atoms in a linear optical cavity illuminated by a two-pump configuration.
We show such configuration allows a smooth transition from a one-dimensional quantum optical lattice configuration to a two-dimensional quantum optical lattice configuration induced by the cavity-atom interaction.
arXiv Detail & Related papers (2022-06-09T14:08:23Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Quantum nonlinear metasurfaces from dual arrays of ultracold atoms [0.4640835690336652]
We show how the coupling of light to more than a single atomic array can expand perspectives into the domain of quantum nonlinear optics.
The combination of two arrays is found to induce strong photon-photon interactions that can convert an incoming classical beam into highly antibunched light.
Such quantum metasurfaces open up new possibilities for coherently generating and manipulating nonclassical light.
arXiv Detail & Related papers (2022-01-17T17:47:11Z) - All-optical Tuning of Indistinguishable Single-Photons Generated in
Three-level Quantum Systems [0.2642406403099596]
We introduce a coherent driving scheme of a three-level ladder system utilizing Autler-Townes and ac Stark effects by resonant excitation with two laser fields.
We propose theoretically and demonstrate experimentally the feasibility of this approach towards all-optical spectral tuning of single-photon sources.
arXiv Detail & Related papers (2022-01-02T22:58:05Z) - Quantum single-photon control, storage, and entanglement generation with
planar atomic arrays [0.0]
We show how to achieve quantum control of an incident single-photon pulse by engineering a two-dimensional atomic array.
Control is achieved by controlling classically or quantum mechanically the ac Stark shifts of the atomic levels.
We illustrate the control by manipulating the phase, phase superposition, polarization, and direction of a transmitted or reflected photon.
arXiv Detail & Related papers (2021-08-09T10:23:33Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.