論文の概要: Neural Cross-Lingual Transfer and Limited Annotated Data for Named
Entity Recognition in Danish
- arxiv url: http://arxiv.org/abs/2003.02931v1
- Date: Thu, 5 Mar 2020 21:25:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 07:09:08.865953
- Title: Neural Cross-Lingual Transfer and Limited Annotated Data for Named
Entity Recognition in Danish
- Title(参考訳): デンマーク語における名前付きエンティティ認識のための言語間のニューラルトランスファーと限定アノテーションデータ
- Authors: Barbara Plank
- Abstract要約: 本稿では,デンマーク語における言語間移動の有効性について検討し,その限定された金データとの相補性を評価し,デンマーク語NERの性能に光を当てる。
- 参考スコア(独自算出の注目度): 21.513743126525622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Named Entity Recognition (NER) has greatly advanced by the introduction of
deep neural architectures. However, the success of these methods depends on
large amounts of training data. The scarcity of publicly-available
human-labeled datasets has resulted in limited evaluation of existing NER
systems, as is the case for Danish. This paper studies the effectiveness of
cross-lingual transfer for Danish, evaluates its complementarity to limited
gold data, and sheds light on performance of Danish NER.
- Abstract(参考訳): 名前付きエンティティ認識(ner)は、ディープニューラルネットワークアーキテクチャの導入によって大きく進歩した。
しかし、これらの手法の成功は、大量のトレーニングデータに依存する。
公開可能な人ラベルデータセットの不足は、デンマークと同様に既存のNERシステムの限られた評価に繋がった。
本稿では,デンマーク語における言語間移動の有効性について検討し,その限定された金データとの相補性を評価し,デンマーク語NERの性能に光を当てる。
関連論文リスト
- Importance-Aware Data Augmentation for Document-Level Neural Machine
Translation [51.74178767827934]
ドキュメントレベルのニューラルマシン翻訳(DocNMT)は、一貫性と結合性の両方を持つ翻訳を生成することを目的としている。
長い入力長とトレーニングデータの可用性が限られているため、DocNMTはデータスパシティーの課題に直面していることが多い。
本稿では,隠れ状態のノルムとトレーニング勾配から推定したトークン重要度情報に基づいてトレーニングデータを拡張するDocNMTのための新しいIADAアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-27T09:27:47Z) - Incorporating Class-based Language Model for Named Entity Recognition in Factorized Neural Transducer [50.572974726351504]
クラスベースのLMをFNTに組み込んだ新しいE2EモデルであるC-FNTを提案する。
C-FNTでは、名前付きエンティティのLMスコアは、その表面形式の代わりに名前クラスに関連付けることができる。
実験の結果,提案したC-FNTは,単語認識の性能を損なうことなく,名前付きエンティティの誤りを著しく低減することがわかった。
論文 参考訳(メタデータ) (2023-09-14T12:14:49Z) - Leveraging Cross-Lingual Transfer Learning in Spoken Named Entity Recognition Systems [1.2494184403263342]
パイプラインとエンド・ツー・エンドの両方のアプローチを用いて,オランダ語,英語,ドイツ語間の移動学習手法を適用した。
我々は、カスタム擬似アノテーション付きデータセットにWav2Vec2 XLS-Rモデルを用いて、言語間システムの適応性を評価する。
論文 参考訳(メタデータ) (2023-07-03T19:30:24Z) - Dataset Distillation: A Comprehensive Review [76.26276286545284]
データセット蒸留(DD)は、トレーニングされたモデルが元のデータセットでトレーニングされたデータセットに匹敵するパフォーマンスを得るために、合成サンプルを含むはるかに小さなデータセットを導出することを目的としている。
本稿ではDDの最近の進歩とその応用について概説する。
論文 参考訳(メタデータ) (2023-01-17T17:03:28Z) - MINER: Improving Out-of-Vocabulary Named Entity Recognition from an
Information Theoretic Perspective [57.19660234992812]
NERモデルは標準のNERベンチマークで有望な性能を達成した。
近年の研究では、従来のアプローチはエンティティ参照情報に過度に依存し、OoV(out-of-vocabulary)エンティティ認識の性能が劣っていることが示されている。
我々は、情報理論の観点からこの問題を改善するための新しいNER学習フレームワークであるMINERを提案する。
論文 参考訳(メタデータ) (2022-04-09T05:18:20Z) - Neural Capacity Estimators: How Reliable Are They? [14.904387585122851]
我々は、相互情報神経推定器(MINE)、スムーズな相互情報下界推定器(SMILE)、情報指向神経推定器(DINE)の性能について検討した。
我々は,AWGNチャネル,光強度チャネル,ピーク電力制約AWGNチャネルに接近する入力分布を学習する能力の観点から,これらのアルゴリズムを評価する。
論文 参考訳(メタデータ) (2021-11-14T18:14:53Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
本稿では,データセットバイアスによる負の効果を軽減するために,新しい感情認識ネットワーク(IERN)を提案する。
IERNの有効性を検証する一連の設計されたテストと、3つの感情ベンチマークの実験は、IERNが他の最先端のアプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-07-26T10:40:59Z) - Generic Semi-Supervised Adversarial Subject Translation for Sensor-Based
Human Activity Recognition [6.2997667081978825]
本稿では,人間活動認識における半教師付きドメイン適応のための,新しい汎用的で堅牢なアプローチを提案する。
本手法は,対象対象対象と対象対象対象対象からのみ注釈付きサンプルからの知識を活用することにより,問題点に対処するための敵対的枠組みの利点を生かしている。
その結果,提案手法が最先端手法に対して有効であることを示し,オポチュニティ,LISSI,PAMAP2データセットの高レベルのアクティビティ認識指標を最大13%,4%,13%改善した。
論文 参考訳(メタデータ) (2020-11-11T12:16:23Z) - Joint Deep Cross-Domain Transfer Learning for Emotion Recognition [46.322012908885775]
本稿では、リッチデータセットから学習した知識をソース・プールデータセットに共同で転送する学習戦略を提案する。
また,本手法は,認識性能の向上につながるクロスドメインな特徴を学習することができる。
論文 参考訳(メタデータ) (2020-03-24T22:30:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。