論文の概要: EmpTransfo: A Multi-head Transformer Architecture for Creating
Empathetic Dialog Systems
- arxiv url: http://arxiv.org/abs/2003.02958v1
- Date: Thu, 5 Mar 2020 23:09:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 06:25:01.725566
- Title: EmpTransfo: A Multi-head Transformer Architecture for Creating
Empathetic Dialog Systems
- Title(参考訳): EmpTransfo:共感型対話システム構築のためのマルチヘッドトランスフォーマーアーキテクチャ
- Authors: Rohola Zandie and Mohammad H. Mahoor
- Abstract要約: 本稿では,共感対話システムを構築するためのマルチヘッドトランスフォーマーアーキテクチャであるEmpTransfoを提案する。
感情やメタデータの履歴を活用することで、生成した会話の質を向上させることができることを示す。
- 参考スコア(独自算出の注目度): 4.41738804598711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding emotions and responding accordingly is one of the biggest
challenges of dialog systems. This paper presents EmpTransfo, a multi-head
Transformer architecture for creating an empathetic dialog system. EmpTransfo
utilizes state-of-the-art pre-trained models (e.g., OpenAI-GPT) for language
generation, though models with different sizes can be used. We show that
utilizing the history of emotions and other metadata can improve the quality of
generated conversations by the dialog system. Our experimental results using a
challenging language corpus show that the proposed approach outperforms other
models in terms of Hit@1 and PPL (Perplexity).
- Abstract(参考訳): 感情の理解と対応は、対話システムにおける最大の課題の1つです。
本稿では,共感対話システムを構築するためのマルチヘッドトランスフォーマティブアーキテクチャであるemptransfoを提案する。
EmpTransfoは言語生成に最先端の事前訓練モデル(OpenAI-GPTなど)を使用しているが、サイズは異なる。
感情やメタデータの履歴を活用することで,対話システムによる会話の質を向上させることができることを示す。
挑戦的な言語コーパスを用いた実験結果から,提案手法はHit@1とPPL(Perplexity)で他のモデルよりも優れていることが示された。
関連論文リスト
- Contextual Data Augmentation for Task-Oriented Dialog Systems [8.085645180329417]
本研究では,ユーザターンを生成する新しいダイアログ拡張モデルを構築し,完全なダイアログコンテキストを条件づける。
言語モデルの新しいプロンプト設計と出力の再ランク付けにより、我々のモデルから生成されたダイアログを直接使用して、下流ダイアログシステムのトレーニングを行うことができる。
論文 参考訳(メタデータ) (2023-10-16T13:22:34Z) - ChatPLUG: Open-Domain Generative Dialogue System with Internet-Augmented
Instruction Tuning for Digital Human [76.62897301298699]
ChatPLUGは、デジタルヒューマンアプリケーションのための中国のオープンドメイン対話システムである。
モデルネームは, 自動評価と人的評価の両方において, 最先端の中国語対話システムより優れていることを示す。
高速な推論でスマートスピーカーやインスタントメッセージアプリケーションのような実世界のアプリケーションにモデルネームをデプロイします。
論文 参考訳(メタデータ) (2023-04-16T18:16:35Z) - An Equal-Size Hard EM Algorithm for Diverse Dialogue Generation [27.445562543667357]
多様な対話生成のためのマルチデコーダモデルを学習するための等サイズハード期待-最大化アルゴリズムを提案する。
提案アルゴリズムでは, サンプルをハードな方法でデコーダに割り当て, また, 全てのデコーダが十分に訓練されていることを保証するために, 均等なアサインメント制約を課す。
論文 参考訳(メタデータ) (2022-09-29T08:41:32Z) - DialogVED: A Pre-trained Latent Variable Encoder-Decoder Model for
Dialog Response Generation [80.45816053153722]
DialogVEDは、拡張エンコーダデコーダ事前トレーニングフレームワークに連続潜伏変数を導入し、応答の関連性と多様性を高める。
我々は,PersonaChat,DailyDialog,DSTC7-AVSDベンチマークを用いて応答生成実験を行った。
論文 参考訳(メタデータ) (2022-04-27T16:18:15Z) - Modeling Coreference Relations in Visual Dialog [18.926582410644375]
ダイアログにおけるコア参照関係の発生は、視覚的質問応答よりも難しい課題となる。
教師なしの方法でダイアログにおけるコア参照を解消するモデルの能力を改善する2つのソフト制約を提案する。
論文 参考訳(メタデータ) (2022-03-06T15:22:24Z) - The Adapter-Bot: All-In-One Controllable Conversational Model [66.48164003532484]
本稿では、DialGPTなどの固定バックボーンモデルを用いて、異なるアダプタを介してオンデマンド対話スキルをトリガーする対話モデルを提案する。
スキルに応じて、モデルはテキスト、テーブル、強調応答などの複数の知識タイプを処理できる。
我々は,既存の会話モデルと比較し,自動評価を用いたモデルの評価を行った。
論文 参考訳(メタデータ) (2020-08-28T10:59:31Z) - Video-Grounded Dialogues with Pretrained Generation Language Models [88.15419265622748]
我々は、ビデオ地上対話を改善するために、事前学習された言語モデルのパワーを利用する。
本稿では,シーケンス・ツー・グラウンドの対話タスクを,シーケンス・トゥ・グラウンドのタスクとして定式化するフレームワークを提案する。
我々のフレームワークは、微調整の言語モデルで複数のモダリティにまたがる依存関係をキャプチャできる。
論文 参考訳(メタデータ) (2020-06-27T08:24:26Z) - VD-BERT: A Unified Vision and Dialog Transformer with BERT [161.0016161052714]
VD-BERTは,視覚対話型トランスフォーマーの簡易かつ効果的なフレームワークである。
我々は、視覚的グラウンドトレーニングにより、視覚と対話内容の効果的な融合にBERTを適用した。
我々のモデルは新たな芸術状態をもたらし、シングルモデルとアンサンブル設定の両方で最高位を達成する。
論文 参考訳(メタデータ) (2020-04-28T04:08:46Z) - Paraphrase Augmented Task-Oriented Dialog Generation [68.1790912977053]
本稿では,パラフレーズモデルと応答生成モデルを協調訓練するパラフレーズ拡張応答生成(PARG)フレームワークを提案する。
また、ダイアログ状態とダイアログアクトラベルに基づいて、パラフレーズトレーニングデータセットを自動構築する手法も設計する。
論文 参考訳(メタデータ) (2020-04-16T05:12:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。