Completing the quantum formalism in a contextually objective framework
- URL: http://arxiv.org/abs/2003.03121v3
- Date: Thu, 3 Dec 2020 17:29:34 GMT
- Title: Completing the quantum formalism in a contextually objective framework
- Authors: Philippe Grangier
- Abstract summary: In standard quantum mechanics, a state vector $| psi rangle$ may belong to infinitely many different orthogonal bases.
In an idealized case, measuring $A$ again and again will give repeatedly the same result, with the same eigenvalue.
The answer is obviously no, since $| psi rangle$ does not specify the full observable $A$ that allowed us to obtain $mu$.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In standard quantum mechanics (QM), a state vector $| \psi \rangle$ may
belong to infinitely many different orthogonal bases, as soon as the dimension
$N$ of the Hilbert space is at least three. On the other hand, a complete
physical observable $A$ (with no degeneracy left) is associated with a
$N$-dimensional orthogonal basis of eigenvectors. In an idealized case,
measuring $A$ again and again will give repeatedly the same result, with the
same eigenvalue. Let us call this repeatable result a modality $\mu$, and the
corresponding eigenstate $| \psi \rangle$. A question is then: does $| \psi
\rangle$ give a complete description of $\mu$ ?
The answer is obviously no, since $| \psi \rangle$ does not specify the full
observable $A$ that allowed us to obtain $\mu$; hence the physical description
given by $| \psi \rangle$ is incomplete, as claimed by Einstein, Podolsky and
Rosen in their famous article in 1935. Here we want to spell out this
provocative statement, and in particular to answer the questions: if $| \psi
\rangle$ is an incomplete description of $\mu$, what does it describe ? is it
possible to obtain a complete description, maybe algebraic ? Our conclusion is
that the incompleteness of standard QM is due to its attempt to describe
systems without contexts, whereas both are always required, even if they can be
separated outside the measurement periods.
Related papers
- Dimension Independent Disentanglers from Unentanglement and Applications [55.86191108738564]
We construct a dimension-independent k-partite disentangler (like) channel from bipartite unentangled input.
We show that to capture NEXP, it suffices to have unentangled proofs of the form $| psi rangle = sqrta | sqrt1-a | psi_+ rangle where $| psi_+ rangle has non-negative amplitudes.
arXiv Detail & Related papers (2024-02-23T12:22:03Z) - Quantum connection, charges and virtual particles [65.268245109828]
A quantum bundle $L_hbar$ is endowed with a connection $A_hbar$ and its sections are standard wave functions $psi$ obeying the Schr"odinger equation.
We will lift the bundles $L_Cpm$ and connection $A_hbar$ on them to the relativistic phase space $T*R3,1$ and couple them to the Dirac spinor bundle describing both particles and antiparticles.
arXiv Detail & Related papers (2023-10-10T10:27:09Z) - Subspace Controllability and Clebsch-Gordan Decomposition of Symmetric
Quantum Networks [0.0]
We describe a framework for the controllability analysis of networks of $n$ quantum systems of an arbitrary dimension $d$, it qudits
Because of the symmetry, the underlying Hilbert space, $cal H=(mathbbCd)otimes n$, splits into invariant subspaces for the Lie algebra of $S_n$-invariant elements in $u(dn)$, denoted here by $uS_n(dn)$.
arXiv Detail & Related papers (2023-07-24T16:06:01Z) - Valuation of a Financial Claim Contingent on the Outcome of a Quantum
Measurement [0.0]
A quantum system is given in the Heisenberg representation by a known density matrix $hat p$.
How much will the agent be willing to pay at time $0$ to enter into such a contract?
We show that there exists a pricing state $hat q$ which is equivalent to the physical state $hat p$ on null spaces.
arXiv Detail & Related papers (2023-05-17T14:27:08Z) - Systematics of quasi-Hermitian representations of non-Hermitian quantum
models [0.0]
This paper introduces and describes a set of constructive returns of the description to one of the correct and eligible physical Hilbert spaces $cal R_N(0)$.
In the extreme of the theory the construction is currently well known and involves solely the inner product metric $Theta=Theta(H)$.
At $j=N$ the inner-product metric remains trivial and only the Hamiltonian must be Hermitized, $H to mathfrakh = Omega,H,Omega-1=mathfrak
arXiv Detail & Related papers (2022-12-07T20:10:58Z) - Algebraic Aspects of Boundaries in the Kitaev Quantum Double Model [77.34726150561087]
We provide a systematic treatment of boundaries based on subgroups $Ksubseteq G$ with the Kitaev quantum double $D(G)$ model in the bulk.
The boundary sites are representations of a $*$-subalgebra $Xisubseteq D(G)$ and we explicate its structure as a strong $*$-quasi-Hopf algebra.
As an application of our treatment, we study patches with boundaries based on $K=G$ horizontally and $K=e$ vertically and show how these could be used in a quantum computer
arXiv Detail & Related papers (2022-08-12T15:05:07Z) - Factorized Hilbert-space metrics and non-commutative quasi-Hermitian
observables [0.0]
It is well known that an (in general, non-commutative) set of non-Hermitian operators $Lambda_j$ with real eigenvalues need not necessarily represent observables.
We describe a specific class of quantum models in which these operators plus the underlying physical Hilbert-space metric $Theta$ are all represented.
arXiv Detail & Related papers (2022-06-27T18:33:03Z) - Beyond the Berry Phase: Extrinsic Geometry of Quantum States [77.34726150561087]
We show how all properties of a quantum manifold of states are fully described by a gauge-invariant Bargmann.
We show how our results have immediate applications to the modern theory of polarization.
arXiv Detail & Related papers (2022-05-30T18:01:34Z) - Uncertainties in Quantum Measurements: A Quantum Tomography [52.77024349608834]
The observables associated with a quantum system $S$ form a non-commutative algebra $mathcal A_S$.
It is assumed that a density matrix $rho$ can be determined from the expectation values of observables.
Abelian algebras do not have inner automorphisms, so the measurement apparatus can determine mean values of observables.
arXiv Detail & Related papers (2021-12-14T16:29:53Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.