Finding online neural update rules by learning to remember
- URL: http://arxiv.org/abs/2003.03124v1
- Date: Fri, 6 Mar 2020 10:31:30 GMT
- Title: Finding online neural update rules by learning to remember
- Authors: Karol Gregor
- Abstract summary: We investigate learning of the online local update rules for neural activations (bodies) and weights (synapses) from scratch.
Different neuron types are represented by different embedding vectors which allows the same two functions to be used for all neurons.
We train for this objective using short term back-propagation and analyze the performance as a function of both the different network types and the difficulty of the problem.
- Score: 3.295767453921912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate learning of the online local update rules for neural
activations (bodies) and weights (synapses) from scratch. We represent the
states of each weight and activation by small vectors, and parameterize their
updates using (meta-) neural networks. Different neuron types are represented
by different embedding vectors which allows the same two functions to be used
for all neurons. Instead of training directly for the objective using evolution
or long term back-propagation, as is commonly done in similar systems, we
motivate and study a different objective: That of remembering past snippets of
experience. We explain how this objective relates to standard back-propagation
training and other forms of learning. We train for this objective using short
term back-propagation and analyze the performance as a function of both the
different network types and the difficulty of the problem. We find that this
analysis gives interesting insights onto what constitutes a learning rule. We
also discuss how such system could form a natural substrate for addressing
topics such as episodic memories, meta-learning and auxiliary objectives.
Related papers
- Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning.
Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task.
They suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima.
This paper proposes a simple yet effective method to ameliorate these problems.
arXiv Detail & Related papers (2024-02-21T15:51:01Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Measures of Information Reflect Memorization Patterns [53.71420125627608]
We show that the diversity in the activation patterns of different neurons is reflective of model generalization and memorization.
Importantly, we discover that information organization points to the two forms of memorization, even for neural activations computed on unlabelled in-distribution examples.
arXiv Detail & Related papers (2022-10-17T20:15:24Z) - Neural Routing in Meta Learning [9.070747377130472]
We aim to improve the model performance of the current meta learning algorithms by selectively using only parts of the model conditioned on the input tasks.
In this work, we describe an approach that investigates task-dependent dynamic neuron selection in deep convolutional neural networks (CNNs) by leveraging the scaling factor in the batch normalization layer.
We find that the proposed approach, neural routing in meta learning (NRML), outperforms one of the well-known existing meta learning baselines on few-shot classification tasks.
arXiv Detail & Related papers (2022-10-14T16:31:24Z) - aSTDP: A More Biologically Plausible Learning [0.0]
We introduce approximate STDP, a new neural networks learning framework.
It uses only STDP rules for supervised and unsupervised learning.
It can make predictions or generate patterns in one model without additional configuration.
arXiv Detail & Related papers (2022-05-22T08:12:50Z) - How and what to learn:The modes of machine learning [7.085027463060304]
We propose a new approach, namely the weight pathway analysis (WPA), to study the mechanism of multilayer neural networks.
WPA shows that a neural network stores and utilizes information in a "holographic" way, that is, the network encodes all training samples in a coherent structure.
It is found that hidden-layer neurons self-organize into different classes in the later stages of the learning process.
arXiv Detail & Related papers (2022-02-28T14:39:06Z) - Training Spiking Neural Networks Using Lessons From Deep Learning [28.827506468167652]
The inner workings of our synapses and neurons provide a glimpse at what the future of deep learning might look like.
Some ideas are well accepted and commonly used amongst the neuromorphic engineering community, while others are presented or justified for the first time here.
A series of companion interactive tutorials complementary to this paper using our Python package, snnTorch, are also made available.
arXiv Detail & Related papers (2021-09-27T09:28:04Z) - Reasoning-Modulated Representations [85.08205744191078]
We study a common setting where our task is not purely opaque.
Our approach paves the way for a new class of data-efficient representation learning.
arXiv Detail & Related papers (2021-07-19T13:57:13Z) - Compositional Explanations of Neurons [52.71742655312625]
We describe a procedure for explaining neurons in deep representations by identifying compositional logical concepts.
We use this procedure to answer several questions on interpretability in models for vision and natural language processing.
arXiv Detail & Related papers (2020-06-24T20:37:05Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z) - Learning Neural Activations [2.842794675894731]
We explore what happens when the activation function of each neuron in an artificial neural network is learned from data alone.
This is achieved by modelling the activation function of each neuron as a small neural network whose weights are shared by all neurons in the original network.
arXiv Detail & Related papers (2019-12-27T15:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.