aSTDP: A More Biologically Plausible Learning
- URL: http://arxiv.org/abs/2206.14137v1
- Date: Sun, 22 May 2022 08:12:50 GMT
- Title: aSTDP: A More Biologically Plausible Learning
- Authors: Shiyuan Li
- Abstract summary: We introduce approximate STDP, a new neural networks learning framework.
It uses only STDP rules for supervised and unsupervised learning.
It can make predictions or generate patterns in one model without additional configuration.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spike-timing dependent plasticity in biological neural networks has been
proven to be important during biological learning process. On the other hand,
artificial neural networks use a different way to learn, such as
Back-Propagation or Contrastive Hebbian Learning. In this work we introduce
approximate STDP, a new neural networks learning framework more similar to the
biological learning process. It uses only STDP rules for supervised and
unsupervised learning, every neuron distributed learn patterns and don' t need
a global loss or other supervised information. We also use a numerical way to
approximate the derivatives of each neuron in order to better use SDTP learning
and use the derivatives to set a target for neurons to accelerate training and
testing process. The framework can make predictions or generate patterns in one
model without additional configuration. Finally, we verified our framework on
MNIST dataset for classification and generation tasks.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Predictive Coding Networks and Inference Learning: Tutorial and Survey [0.7510165488300368]
Predictive coding networks (PCNs) are based on the neuroscientific framework of predictive coding.
Unlike traditional neural networks trained with backpropagation (BP), PCNs utilize inference learning (IL), a more biologically plausible algorithm.
As inherently probabilistic (graphical) latent variable models, PCNs provide a versatile framework for both supervised learning and unsupervised (generative) modeling.
arXiv Detail & Related papers (2024-07-04T18:39:20Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Transfer Learning with Deep Tabular Models [66.67017691983182]
We show that upstream data gives tabular neural networks a decisive advantage over GBDT models.
We propose a realistic medical diagnosis benchmark for tabular transfer learning.
We propose a pseudo-feature method for cases where the upstream and downstream feature sets differ.
arXiv Detail & Related papers (2022-06-30T14:24:32Z) - An STDP-Based Supervised Learning Algorithm for Spiking Neural Networks [20.309112286222238]
Spiking Neural Networks (SNN) provide a more biological plausible model for the brain.
We propose a supervised learning algorithm based on Spike-Timing Dependent Plasticity (STDP) for a hierarchical SNN consisting of Leaky Integrate-and-fire neurons.
arXiv Detail & Related papers (2022-03-07T13:40:09Z) - How and what to learn:The modes of machine learning [7.085027463060304]
We propose a new approach, namely the weight pathway analysis (WPA), to study the mechanism of multilayer neural networks.
WPA shows that a neural network stores and utilizes information in a "holographic" way, that is, the network encodes all training samples in a coherent structure.
It is found that hidden-layer neurons self-organize into different classes in the later stages of the learning process.
arXiv Detail & Related papers (2022-02-28T14:39:06Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z) - Equilibrium Propagation for Complete Directed Neural Networks [0.0]
Most successful learning algorithm for artificial neural networks, backpropagation, is considered biologically implausible.
We contribute to the topic of biologically plausible neuronal learning by building upon and extending the equilibrium propagation learning framework.
arXiv Detail & Related papers (2020-06-15T22:12:30Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.