Demographic Bias in Presentation Attack Detection of Iris Recognition
Systems
- URL: http://arxiv.org/abs/2003.03151v2
- Date: Fri, 3 Jul 2020 10:02:30 GMT
- Title: Demographic Bias in Presentation Attack Detection of Iris Recognition
Systems
- Authors: Meiling Fang, Naser Damer, Florian Kirchbuchner, Arjan Kuijper
- Abstract summary: We investigate and analyze the demographic bias in presentation attack detection (PAD) algorithms.
We adapt the notions of differential performance and differential outcome to the PAD problem.
Experiments show that female users will be significantly less protected by the PAD, in comparison to males.
- Score: 15.15287401843062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the widespread use of biometric systems, the demographic bias problem
raises more attention. Although many studies addressed bias issues in biometric
verification, there are no works that analyze the bias in presentation attack
detection (PAD) decisions. Hence, we investigate and analyze the demographic
bias in iris PAD algorithms in this paper. To enable a clear discussion, we
adapt the notions of differential performance and differential outcome to the
PAD problem. We study the bias in iris PAD using three baselines (hand-crafted,
transfer-learning, and training from scratch) using the NDCLD-2013 database.
The experimental results point out that female users will be significantly less
protected by the PAD, in comparison to males.
Related papers
- How far can bias go? -- Tracing bias from pretraining data to alignment [54.51310112013655]
This study examines the correlation between gender-occupation bias in pre-training data and their manifestation in LLMs.
Our findings reveal that biases present in pre-training data are amplified in model outputs.
arXiv Detail & Related papers (2024-11-28T16:20:25Z) - Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
We first contribute a dedicated dataset called the Fair Forgery Detection (FairFD) dataset, where we prove the racial bias of public state-of-the-art (SOTA) methods.
We design novel metrics including Approach Averaged Metric and Utility Regularized Metric, which can avoid deceptive results.
We also present an effective and robust post-processing technique, Bias Pruning with Fair Activations (BPFA), which improves fairness without requiring retraining or weight updates.
arXiv Detail & Related papers (2024-07-19T14:53:18Z) - (Predictable) Performance Bias in Unsupervised Anomaly Detection [3.826262429926079]
Unsupervised anomaly detection (UAD) models promise to aid in the crucial first step of disease detection.
Our study quantified the disparate performance of UAD models against certain demographic subgroups.
arXiv Detail & Related papers (2023-09-25T14:57:43Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Anatomizing Bias in Facial Analysis [86.79402670904338]
Existing facial analysis systems have been shown to yield biased results against certain demographic subgroups.
It has become imperative to ensure that these systems do not discriminate based on gender, identity, or skin tone of individuals.
This has led to research in the identification and mitigation of bias in AI systems.
arXiv Detail & Related papers (2021-12-13T09:51:13Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
There are demographic biases present in current facial recognition (FR) models.
We introduce our Balanced Faces in the Wild dataset to measure these biases across different ethnic and gender subgroups.
We find that relying on a single score threshold to differentiate between genuine and imposters sample pairs leads to suboptimal results.
We propose a novel domain adaptation learning scheme that uses facial features extracted from state-of-the-art neural networks.
arXiv Detail & Related papers (2021-03-16T15:05:49Z) - Risk of Training Diagnostic Algorithms on Data with Demographic Bias [0.5599792629509227]
We conduct a survey of the MICCAI 2018 proceedings to investigate the common practice in medical image analysis applications.
Surprisingly, we found that papers focusing on diagnosis rarely describe the demographics of the datasets used.
We show that it is possible to learn unbiased features by explicitly using demographic variables in an adversarial training setup.
arXiv Detail & Related papers (2020-05-20T13:51:01Z) - InsideBias: Measuring Bias in Deep Networks and Application to Face
Gender Biometrics [73.85525896663371]
This work explores the biases in learning processes based on deep neural network architectures.
We employ two gender detection models based on popular deep neural networks.
We propose InsideBias, a novel method to detect biased models.
arXiv Detail & Related papers (2020-04-14T15:20:50Z) - Demographic Bias: A Challenge for Fingervein Recognition Systems? [0.0]
Concerns regarding potential biases in the underlying algorithms of many automated systems (including biometrics) have been raised.
A biased algorithm produces statistically different outcomes for different groups of individuals based on certain (often protected by anti-discrimination legislation) attributes such as sex and age.
In this paper, several popular types of recognition algorithms are benchmarked to ascertain the matter for fingervein recognition.
arXiv Detail & Related papers (2020-04-03T07:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.