Towards a predictive spatio-temporal representation of brain data
- URL: http://arxiv.org/abs/2003.03290v1
- Date: Sat, 29 Feb 2020 18:49:45 GMT
- Title: Towards a predictive spatio-temporal representation of brain data
- Authors: Tiago Azevedo, Luca Passamonti, Pietro Li\`o, Nicola Toschi
- Abstract summary: We show that fMRI datasets are constituted by complex and highly heterogeneous timeseries.
We compare various modelling techniques from deep learning and geometric deep learning to pave the way for future research.
We hope that our methodological advances can ultimately be clinically and computationally relevant by leading to a more nuanced understanding of the brain dynamics in health and disease.
- Score: 0.2580765958706854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The characterisation of the brain as a "connectome", in which the connections
are represented by correlational values across timeseries and as summary
measures derived from graph theory analyses, has been very popular in the last
years. However, although this representation has advanced our understanding of
the brain function, it may represent an oversimplified model. This is because
the typical fMRI datasets are constituted by complex and highly heterogeneous
timeseries that vary across space (i.e., location of brain regions). We compare
various modelling techniques from deep learning and geometric deep learning to
pave the way for future research in effectively leveraging the rich spatial and
temporal domains of typical fMRI datasets, as well as of other similar
datasets. As a proof-of-concept, we compare our approaches in the homogeneous
and publicly available Human Connectome Project (HCP) dataset on a supervised
binary classification task. We hope that our methodological advances relative
to previous "connectomic" measures can ultimately be clinically and
computationally relevant by leading to a more nuanced understanding of the
brain dynamics in health and disease. Such understanding of the brain can
fundamentally reduce the constant specialised clinical expertise in order to
accurately understand brain variability.
Related papers
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest.
These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand.
We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series.
arXiv Detail & Related papers (2024-05-19T23:35:06Z) - Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
Building comprehensive brain connectomes has proved to be fundamental importance in resting-state fMRI (rs-fMRI) analysis.
We model the brain network as a directed acyclic graph (DAG) to discover direct causal connections between brain regions.
We propose Spatial-Temporal DAG Convolutional Network (ST-DAGCN) to jointly infer effective connectivity and classify rs-fMRI time series.
arXiv Detail & Related papers (2023-12-16T04:31:51Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - MBrain: A Multi-channel Self-Supervised Learning Framework for Brain
Signals [7.682832730967219]
We study the self-supervised learning framework for brain signals that can be applied to pre-train either SEEG or EEG data.
Inspired by this, we propose MBrain to learn implicit spatial and temporal correlations between different channels.
Our model outperforms several state-of-the-art time series SSL and unsupervised models, and has the ability to be deployed to clinical practice.
arXiv Detail & Related papers (2023-06-15T09:14:26Z) - Connectional-Style-Guided Contextual Representation Learning for Brain
Disease Diagnosis [12.172262618438173]
We propose a connectional style contextual representation learning model (CS-CRL) to capture the intrinsic pattern of the brain.
CS-CRL achieves superior accuracy in multiple brain disease diagnosis tasks across six datasets and three diseases.
arXiv Detail & Related papers (2023-06-08T15:39:27Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
Graphs are a natural representation of brain activity derived from functional magnetic imaging (fMRI) data.
It is well known that clusters of anatomical brain regions, known as functional connectivity networks (FCNs), encode temporal relationships which can serve as useful biomarkers for understanding brain function and dysfunction.
Previous works, however, ignore the temporal dynamics of the brain and focus on static graphs.
We propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously clusters brain regions into temporally evolving communities and learns dynamic unsupervised node embeddings.
arXiv Detail & Related papers (2023-01-26T20:45:30Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormer is a general hybrid Transformer architecture for brain disease classification with single fMRI volume.
BrainFormer is constructed by modeling the local cues within each voxel with 3D convolutions.
We evaluate BrainFormer on five independently acquired datasets including ABIDE, ADNI, MPILMBB, ADHD-200 and ECHO.
arXiv Detail & Related papers (2022-08-05T07:54:10Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.