Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification
- URL: http://arxiv.org/abs/2312.10317v1
- Date: Sat, 16 Dec 2023 04:31:51 GMT
- Title: Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification
- Authors: Rui Yang, Wenrui Dai, Huajun She, Yiping P. Du, Dapeng Wu, Hongkai
Xiong
- Abstract summary: Building comprehensive brain connectomes has proved to be fundamental importance in resting-state fMRI (rs-fMRI) analysis.
We model the brain network as a directed acyclic graph (DAG) to discover direct causal connections between brain regions.
We propose Spatial-Temporal DAG Convolutional Network (ST-DAGCN) to jointly infer effective connectivity and classify rs-fMRI time series.
- Score: 42.82118108887965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building comprehensive brain connectomes has proved of fundamental importance
in resting-state fMRI (rs-fMRI) analysis. Based on the foundation of brain
network, spatial-temporal-based graph convolutional networks have dramatically
improved the performance of deep learning methods in rs-fMRI time series
classification. However, existing works either pre-define the brain network as
the correlation matrix derived from the raw time series or jointly learn the
connectome and model parameters without any topology constraint. These methods
could suffer from degraded classification performance caused by the deviation
from the intrinsic brain connectivity and lack biological interpretability of
demonstrating the causal structure (i.e., effective connectivity) among brain
regions. Moreover, most existing methods for effective connectivity learning
are unaware of the downstream classification task and cannot sufficiently
exploit useful rs-fMRI label information. To address these issues in an
end-to-end manner, we model the brain network as a directed acyclic graph (DAG)
to discover direct causal connections between brain regions and propose
Spatial-Temporal DAG Convolutional Network (ST-DAGCN) to jointly infer
effective connectivity and classify rs-fMRI time series by learning brain
representations based on nonlinear structural equation model. The optimization
problem is formulated into a continuous program and solved with score-based
learning method via gradient descent. We evaluate ST-DAGCN on two public
rs-fMRI databases. Experiments show that ST-DAGCN outperforms existing models
by evident margins in rs-fMRI classification and simultaneously learns
meaningful edges of effective connectivity that help understand brain activity
patterns and pathological mechanisms in brain disease.
Related papers
- Online Multi-modal Root Cause Analysis [61.94987309148539]
Root Cause Analysis (RCA) is essential for pinpointing the root causes of failures in microservice systems.
Existing online RCA methods handle only single-modal data overlooking, complex interactions in multi-modal systems.
We introduce OCEAN, a novel online multi-modal causal structure learning method for root cause localization.
arXiv Detail & Related papers (2024-10-13T21:47:36Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
We propose Brain Masked Auto-Encoder (BrainMAE) for learning representations directly from fMRI time-series data.
BrainMAE consistently outperforms established baseline methods by significant margins in four distinct downstream tasks.
arXiv Detail & Related papers (2024-06-24T19:16:24Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - A Deep Probabilistic Spatiotemporal Framework for Dynamic Graph Representation Learning with Application to Brain Disorder Identification [5.563162319586206]
Recent applications of pattern recognition techniques on brain connectome classification using functional connectivity (FC) are shifting towards acknowledging aspects of brain connectivity across time.
In this paper, a deep non-temporalal variation Bayes framework is proposed to learn to identify autism spectrum disorder (ASD) in human participants.
The framework incorporates a spatial-aware recurrent neural network with an attention-based message passing scheme to capture richtemporal patterns across dynamic FC networks.
arXiv Detail & Related papers (2023-02-14T18:42:17Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - A deep learning model for data-driven discovery of functional
connectivity [0.0]
We propose a deep learning architecture BrainGNN that learns the connectivity structure as part of learning to classify subjects.
We demonstrate the model's state-of-the-art classification performance on a schizophrenia fMRI dataset.
arXiv Detail & Related papers (2021-12-07T21:57:32Z) - Graph Autoencoders for Embedding Learning in Brain Networks and Major
Depressive Disorder Identification [13.907981019956832]
We propose a graph deep learning framework to incorporate the non-Euclidean information about graph structure for classifying brain networks in major depressive disorder (MDD)
We design a novel graph autoencoder (GAE) architecture based on the graph convolutional networks (GCNs) to embed the topological structure and node content of large-sized fMRI networks into low-dimensional latent representations.
Our new framework demonstrates feasibility of learning graph embeddings on brain networks to provide discriminative information for diagnosis of brain disorders.
arXiv Detail & Related papers (2021-07-27T14:12:39Z) - Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis [11.85489505372321]
We train a-temporal graph convolutional network (ST-GCN) on short sub-sequences of the BOLD time series to model the non-stationary nature of functional connectivity.
St-GCN is significantly more accurate than common approaches in predicting gender and age based on BOLD signals.
arXiv Detail & Related papers (2020-03-24T01:56:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.