Heisenberg-limited spin-squeezing via bosonic parametric driving
- URL: http://arxiv.org/abs/2003.03345v1
- Date: Fri, 6 Mar 2020 18:24:13 GMT
- Title: Heisenberg-limited spin-squeezing via bosonic parametric driving
- Authors: Peter Groszkowski, Hoi-Kwan Lau, C. Leroux, L. C. G. Govia, A. A.
Clerk
- Abstract summary: We show how introducing a weak detuned parametric drive on the cavity provides a powerful means for controlling the form of the induced interactions.
Without a drive, the induced interactions cannot generate Heisenberg-limited spin squeezing, but a weak optimized drive gives rise to an ideal two-axis twist interaction and Heisenberg-limited squeezing.
Our scheme is compatible with a number of platforms, including solid-state systems where spin ensembles are coupled to superconducting quantum circuits or mechanical modes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin-spin interactions generated by a detuned cavity are a standard mechanism
for generating highly entangled spin squeezed states. We show here how
introducing a weak detuned parametric (two-photon) drive on the cavity provides
a powerful means for controlling the form of the induced interactions. Without
a drive, the induced interactions cannot generate Heisenberg-limited spin
squeezing, but a weak optimized drive gives rise to an ideal two-axis twist
interaction and Heisenberg-limited squeezing. Parametric driving is also
advantageous in regimes limited by dissipation, and enables an alternate
adiabatic scheme which can prepare optimally squeezed, Dicke-like states. Our
scheme is compatible with a number of platforms, including solid-state systems
where spin ensembles are coupled to superconducting quantum circuits or
mechanical modes.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Heisenberg-limited spin squeezing in a hybrid system with
Silicon-Vacancy centers [0.0]
We investigate spin squeezing in a hybrid quantum system consisting of a Silicon-Vacancy (SiV) center ensemble and a diamond acoustic waveguide.
By modulating these fields, the one-axis twist (OAT) interaction and two-axis two-spin (TATS) interaction can be independently realized.
In the latter case the squeezing parameter scales to spin number as $xi_R2sim1.61N-0.64$ with the consideration of dissipation, which is very close to the Heisenberg limit.
arXiv Detail & Related papers (2023-08-10T04:58:33Z) - Cavity-mediated entanglement of parametrically driven spin qubits via
sidebands [0.0]
We consider a pair of quantum dot-based spin qubits that interact via microwave photons in a superconducting cavity, and that are also parametrically driven by separate external electric fields.
We show that the sidebands generated via the driving fields enable highly tunable qubit-qubit entanglement using only ac control.
arXiv Detail & Related papers (2023-07-12T10:35:43Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Spin-spin coupling-based quantum and classical phase transitions in
two-impurity spin-boson models [55.41644538483948]
Two-interacting-impurity spin-boson models with vanishing transverse fields on the spin-pair are studied.
The dynamics of the magnetization is analysed for different levels of (an)isotropy.
arXiv Detail & Related papers (2022-05-19T08:01:03Z) - Accelerated adiabatic passage in cavity magnomechanics [0.0]
Cavity magnomechanics provides a readily-controllable hybrid system, that consisted of cavity mode, magnon mode, and phonon mode, for quantum state manipulation.
We propose two accelerated adiabatic-passage protocols based on the counterdiabatic Hamiltonian for transitionless quantum driving.
arXiv Detail & Related papers (2022-01-29T09:24:34Z) - Entanglement Limits in Hybrid Spin-Mechanical Systems [0.0]
We find that the spin cavity entanglement saturates to a particular value when no mechanics are involved.
The entanglement reaches its maximum when the effective resonance frequency and bandwidth of the cavity match the spin system.
arXiv Detail & Related papers (2021-08-30T13:10:48Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Enhancing spin-phonon and spin-spin interactions using linear resources
in a hybrid quantum system [7.341629408181271]
Hybrid spin-mechanical setups offer a versatile platform for quantum science and technology.
We propose and analyze an experimentally feasible and simple method for exponentially enhancing the spin-phonon.
arXiv Detail & Related papers (2020-03-16T12:42:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.