Floquet-engineered system-reservoir interaction in the transverse field Ising model
- URL: http://arxiv.org/abs/2501.07527v2
- Date: Fri, 17 Jan 2025 20:56:31 GMT
- Title: Floquet-engineered system-reservoir interaction in the transverse field Ising model
- Authors: Maritza Ahumada, Natalia Valderrama-Quinteros, Guillermo Romero,
- Abstract summary: We report on a Floquet-engineered transverse field Ising model for the controlled propagation in one dimension of spin waves.
Our schemes may have applications in coupling-decoupling schemes for system-reservoir interaction, and routing in quantum networks.
- Score: 0.0
- License:
- Abstract: Periodically driving a quantum many-body system can drastically change its properties, leading to exotic non-equilibrium states of matter without a static analog. In this scenario, parametric resonances and the complexity of an interacting many-body system are pivotal in establishing non-equilibrium states. We report on a Floquet-engineered transverse field Ising model for the controlled propagation in one dimension of spin waves. The underlying mechanisms behind our proposal rely on high-frequency drivings using characteristic parametric resonances of the spin lattice. Many-body resonances modulating spin-sping exchange or individual spin gaps inhibit interactions between spins thus proving a mechanism for controlling spin-wave propagation and a quantum switch. Our schemes may have applications in coupling-decoupling schemes for system-reservoir interaction, and routing in quantum networks.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Oscillatory dissipative tunneling in an asymmetric double-well potential [32.65699367892846]
Chemical research will benefit from a fully adjustable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates.
We show a quantum simulator system that consists of a continuously driven Kerr parametric oscillator with a third order non-linearity that can be operated in the quantum regime to create a fully asymmetric double-well.
Our work is a first step for the development of analog molecule simulators of proton transfer reactions based on quantum superconducting circuits.
arXiv Detail & Related papers (2024-09-19T22:43:07Z) - Study of quantum phase transition and entanglement in coupled top systems with standard and nonstandard symmetries under Floquet formalism [15.699822139827916]
We study an effective time-independent Hamiltonian of a coupled kicked-top (CKT) system derived using the Van Vleck-based perturbation theory at the high-frequency driving limit under Floquet formalism.
We study classical and quantum versions of this coupled top system for torsion-free and nonzero torsion cases.
arXiv Detail & Related papers (2024-09-13T06:36:41Z) - Steering spin fluctuations in lattice systems via two-tone Floquet engineering [1.2289361708127877]
We consider a one-dimensional spin-1/2 lattice with periodically modulated spin exchanges using parametric resonances.
The stroboscopic dynamics generated from distributed spin exchange modulations lead to spin pair fluctuations reaching quasi-maximally correlated states.
We present a protocol to control the interacting many-body dynamics, producing spatial and temporal localization of correlated spin pairs.
arXiv Detail & Related papers (2024-01-08T13:42:55Z) - Two-qubit logic between distant spins in silicon [0.5561396798949833]
In this work, we utilize a superconducting resonator to facilitate a coherent interaction between two semiconductor spin qubits 250 $mu$m apart.
Results hold promise for scalable networks of spin qubit modules on a chip.
arXiv Detail & Related papers (2023-10-25T17:37:03Z) - Engineering nonlinear boson-boson interactions using mediating spin
systems [0.0]
We present a protocol to create entangled coherent states by engineering cross-Kerr interactions between bosonic systems endowed with internal spin-like degrees of freedom.
With slight modifications, the protocol is also able to produce N00N states through nonlinear beam splitter interactions.
arXiv Detail & Related papers (2023-09-18T18:15:44Z) - Exact Results for a Boundary-Driven Double Spin Chain and Resource-Efficient Remote Entanglement Stabilization [15.902631337426316]
We derive an exact solution for the steady state of a setup where two $XX$-coupled $N$-qubit spin chains are subject to boundary Rabi drives.
For a wide range of parameters, this system has a pure entangled steady state.
arXiv Detail & Related papers (2023-07-18T17:59:15Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Programmable N-body interactions with trapped ions [0.0]
Trapped atomic ion qubits are a powerful quantum platform for quantum computation and simulation.
We formulate and analyze a mechanism that extends the standard Molmer-Sorensen pairwise entangling gate.
We show that spin-dependent optical forces applied at twice the motional frequency generate a coordinate-transformation of the collective ion motion in phase-space.
arXiv Detail & Related papers (2022-07-21T15:49:52Z) - Dynamics of a multipartite hybrid quantum system with beamsplitter,
dipole-dipole, and Ising interactions [0.0]
We make use of one such hybrid bipartite quantum model, with one subsystem made of a pair of qubits and another comprising a pair of oscillators.
Our basic model is the standard double Jaynes-Cummings system, which is known to support both entanglement transfer and entanglement sudden death.
We show that compared to the beamsplitter or dipole-dipole interaction, the Ising interaction can have a significant positive impact on entanglement sudden death and birth.
arXiv Detail & Related papers (2021-12-21T21:12:08Z) - Non-equilibrium non-Markovian steady-states in open quantum many-body
systems: Persistent oscillations in Heisenberg quantum spin chains [68.8204255655161]
We investigate the effect of a non-Markovian, structured reservoir on an open Heisenberg spin chain.
We establish a coherent self-feedback mechanism as the reservoir couples frequency-dependent to the spin chain.
arXiv Detail & Related papers (2020-06-05T09:16:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.