BasisVAE: Translation-invariant feature-level clustering with
Variational Autoencoders
- URL: http://arxiv.org/abs/2003.03462v1
- Date: Fri, 6 Mar 2020 23:10:52 GMT
- Title: BasisVAE: Translation-invariant feature-level clustering with
Variational Autoencoders
- Authors: Kaspar M\"artens and Christopher Yau
- Abstract summary: Variational Autoencoders (VAEs) provide a flexible and scalable framework for non-linear dimensionality reduction.
We show how a collapsed variational inference scheme leads to scalable and efficient inference for BasisVAE.
- Score: 9.51828574518325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational Autoencoders (VAEs) provide a flexible and scalable framework for
non-linear dimensionality reduction. However, in application domains such as
genomics where data sets are typically tabular and high-dimensional, a
black-box approach to dimensionality reduction does not provide sufficient
insights. Common data analysis workflows additionally use clustering techniques
to identify groups of similar features. This usually leads to a two-stage
process, however, it would be desirable to construct a joint modelling
framework for simultaneous dimensionality reduction and clustering of features.
In this paper, we propose to achieve this through the BasisVAE: a combination
of the VAE and a probabilistic clustering prior, which lets us learn a one-hot
basis function representation as part of the decoder network. Furthermore, for
scenarios where not all features are aligned, we develop an extension to handle
translation-invariant basis functions. We show how a collapsed variational
inference scheme leads to scalable and efficient inference for BasisVAE,
demonstrated on various toy examples as well as on single-cell gene expression
data.
Related papers
- Flexible inference in heterogeneous and attributed multilayer networks [21.349513661012498]
We develop a probabilistic generative model to perform inference in multilayer networks with arbitrary types of information.
We demonstrate its ability to unveil a variety of patterns in a social support network among villagers in rural India.
arXiv Detail & Related papers (2024-05-31T15:21:59Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
We explore the phenomenon and reveal key relationships between dimensionality of AI model's feature space, non-degeneracy of data distributions, and the model's generalisation capabilities.
The main thrust of our present analysis is on the influence of nonlinear feature transformations mapping original data into higher- and possibly infinite-dimensional spaces on the resulting model's generalisation capabilities.
arXiv Detail & Related papers (2022-03-31T10:36:50Z) - Multi-Facet Clustering Variational Autoencoders [9.150555507030083]
High-dimensional data, such as images, typically feature multiple interesting characteristics one could cluster over.
We introduce Multi-Facet Clustering Variational Autoencoders (MFCVAE)
MFCVAE learns multiple clusterings simultaneously, and is trained fully unsupervised and end-to-end.
arXiv Detail & Related papers (2021-06-09T17:36:38Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - Adaptive Graph-based Generalized Regression Model for Unsupervised
Feature Selection [11.214334712819396]
How to select the uncorrelated and discriminative features is the key problem of unsupervised feature selection.
We present a novel generalized regression model imposed by an uncorrelated constraint and the $ell_2,1$-norm regularization.
It can simultaneously select the uncorrelated and discriminative features as well as reduce the variance of these data points belonging to the same neighborhood.
arXiv Detail & Related papers (2020-12-27T09:07:26Z) - Invariant Deep Compressible Covariance Pooling for Aerial Scene
Categorization [80.55951673479237]
We propose a novel invariant deep compressible covariance pooling (IDCCP) to solve nuisance variations in aerial scene categorization.
We conduct extensive experiments on the publicly released aerial scene image data sets and demonstrate the superiority of this method compared with state-of-the-art methods.
arXiv Detail & Related papers (2020-11-11T11:13:07Z) - Controlling for sparsity in sparse factor analysis models: adaptive
latent feature sharing for piecewise linear dimensionality reduction [2.896192909215469]
We propose a simple and tractable parametric feature allocation model which can address key limitations of current latent feature decomposition techniques.
We derive a novel adaptive Factor analysis (aFA), as well as, an adaptive probabilistic principle component analysis (aPPCA) capable of flexible structure discovery and dimensionality reduction.
We show that aPPCA and aFA can infer interpretable high level features both when applied on raw MNIST and when applied for interpreting autoencoder features.
arXiv Detail & Related papers (2020-06-22T16:09:11Z) - Invariant Feature Coding using Tensor Product Representation [75.62232699377877]
We prove that the group-invariant feature vector contains sufficient discriminative information when learning a linear classifier.
A novel feature model that explicitly consider group action is proposed for principal component analysis and k-means clustering.
arXiv Detail & Related papers (2019-06-05T07:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.