Learning from few examples with nonlinear feature maps
- URL: http://arxiv.org/abs/2203.16935v1
- Date: Thu, 31 Mar 2022 10:36:50 GMT
- Title: Learning from few examples with nonlinear feature maps
- Authors: Ivan Y. Tyukin, Oliver Sutton, Alexander N. Gorban
- Abstract summary: We explore the phenomenon and reveal key relationships between dimensionality of AI model's feature space, non-degeneracy of data distributions, and the model's generalisation capabilities.
The main thrust of our present analysis is on the influence of nonlinear feature transformations mapping original data into higher- and possibly infinite-dimensional spaces on the resulting model's generalisation capabilities.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we consider the problem of data classification in post-classical
settings were the number of training examples consists of mere few data points.
We explore the phenomenon and reveal key relationships between dimensionality
of AI model's feature space, non-degeneracy of data distributions, and the
model's generalisation capabilities. The main thrust of our present analysis is
on the influence of nonlinear feature transformations mapping original data
into higher- and possibly infinite-dimensional spaces on the resulting model's
generalisation capabilities. Subject to appropriate assumptions, we establish
new relationships between intrinsic dimensions of the transformed data and the
probabilities to learn successfully from few presentations.
Related papers
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Joint Distributional Learning via Cramer-Wold Distance [0.7614628596146602]
We introduce the Cramer-Wold distance regularization, which can be computed in a closed-form, to facilitate joint distributional learning for high-dimensional datasets.
We also introduce a two-step learning method to enable flexible prior modeling and improve the alignment between the aggregated posterior and the prior distribution.
arXiv Detail & Related papers (2023-10-25T05:24:23Z) - On the Joint Interaction of Models, Data, and Features [82.60073661644435]
We introduce a new tool, the interaction tensor, for empirically analyzing the interaction between data and model through features.
Based on these observations, we propose a conceptual framework for feature learning.
Under this framework, the expected accuracy for a single hypothesis and agreement for a pair of hypotheses can both be derived in closed-form.
arXiv Detail & Related papers (2023-06-07T21:35:26Z) - ProtoVAE: Prototypical Networks for Unsupervised Disentanglement [1.6114012813668934]
We introduce a novel deep generative VAE-based model, ProtoVAE, that leverages a deep metric learning Prototypical network trained using self-supervision.
Our model is completely unsupervised and requires no priori knowledge of the dataset, including the number of factors.
We evaluate our proposed model on the benchmark dSprites, 3DShapes, and MPI3D disentanglement datasets.
arXiv Detail & Related papers (2023-05-16T01:29:26Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
We consider the problem of data classification where the training set consists of just a few data points.
We reveal key relationships between the geometry of an AI model's feature space, the structure of the underlying data distributions, and the model's generalisation capabilities.
arXiv Detail & Related papers (2022-11-07T14:52:58Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Generalisation error in learning with random features and the hidden
manifold model [23.71637173968353]
We study generalised linear regression and classification for a synthetically generated dataset.
We consider the high-dimensional regime and using the replica method from statistical physics.
We show how to obtain the so-called double descent behaviour for logistic regression with a peak at the threshold.
We discuss the role played by correlations in the data generated by the hidden manifold model.
arXiv Detail & Related papers (2020-02-21T14:49:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.