Semantic Change Pattern Analysis
- URL: http://arxiv.org/abs/2003.03492v1
- Date: Sat, 7 Mar 2020 02:22:19 GMT
- Title: Semantic Change Pattern Analysis
- Authors: Wensheng Cheng, Yan Zhang, Xu Lei, Wen Yang, Guisong Xia
- Abstract summary: We propose a new task called semantic change pattern analysis for aerial images.
Given a pair of co-registered aerial images, the task requires a result including both where and what changes happen.
We provide the first well-annotated aerial image dataset for this task.
- Score: 31.829389559219276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change detection is an important problem in vision field, especially for
aerial images. However, most works focus on traditional change detection, i.e.,
where changes happen, without considering the change type information, i.e.,
what changes happen. Although a few works have tried to apply semantic
information to traditional change detection, they either only give the label of
emerging objects without taking the change type into consideration, or set some
kinds of change subjectively without specifying semantic information. To make
use of semantic information and analyze change types comprehensively, we
propose a new task called semantic change pattern analysis for aerial images.
Given a pair of co-registered aerial images, the task requires a result
including both where and what changes happen. We then describe the metric
adopted for the task, which is clean and interpretable. We further provide the
first well-annotated aerial image dataset for this task. Extensive baseline
experiments are conducted as reference for following works. The aim of this
work is to explore high-level information based on change detection and
facilitate the development of this field with the publicly available dataset.
Related papers
- Show Me What and Where has Changed? Question Answering and Grounding for Remote Sensing Change Detection [82.65760006883248]
We introduce a new task named Change Detection Question Answering and Grounding (CDQAG)
CDQAG extends the traditional change detection task by providing interpretable textual answers and intuitive visual evidence.
We construct the first CDQAG benchmark dataset, termed QAG-360K, comprising over 360K triplets of questions, textual answers, and corresponding high-quality visual masks.
arXiv Detail & Related papers (2024-10-31T11:20:13Z) - Segment Any Change [64.23961453159454]
We propose a new type of change detection model that supports zero-shot prediction and generalization on unseen change types and data distributions.
AnyChange is built on the segment anything model (SAM) via our training-free adaptation method, bitemporal latent matching.
We also propose a point query mechanism to enable AnyChange's zero-shot object-centric change detection capability.
arXiv Detail & Related papers (2024-02-02T07:17:39Z) - MS-Former: Memory-Supported Transformer for Weakly Supervised Change
Detection with Patch-Level Annotations [50.79913333804232]
We propose a memory-supported transformer (MS-Former) for weakly supervised change detection.
MS-Former consists of a bi-directional attention block (BAB) and a patch-level supervision scheme (PSS)
Experimental results on three benchmark datasets demonstrate the effectiveness of our proposed method in the change detection task.
arXiv Detail & Related papers (2023-11-16T09:57:29Z) - VcT: Visual change Transformer for Remote Sensing Image Change Detection [16.778418602705287]
We propose a novel Visual change Transformer (VcT) model for visual change detection problem.
Top-K reliable tokens can be mined from the map and refined by using the clustering algorithm.
Extensive experiments on multiple benchmark datasets validated the effectiveness of our proposed VcT model.
arXiv Detail & Related papers (2023-10-17T17:25:31Z) - Substance or Style: What Does Your Image Embedding Know? [55.676463077772866]
Image foundation models have primarily been evaluated for semantic content.
We measure the visual content of embeddings along many axes, including image style, quality, and a range of natural and artificial transformations.
We find that image-text models (CLIP and ALIGN) are better at recognizing new examples of style transfer than masking-based models (CAN and MAE)
arXiv Detail & Related papers (2023-07-10T22:40:10Z) - MapFormer: Boosting Change Detection by Using Pre-change Information [2.436285270638041]
We leverage existing maps describing features of the earth's surface for change detection in bi-temporal images.
We show that the simple integration of the additional information via concatenation of latent representations suffices to significantly outperform state-of-the-art change detection methods.
Our approach outperforms existing change detection methods by an absolute 11.7% and 18.4% in terms of binary change IoU on DynamicEarthNet and HRSCD, respectively.
arXiv Detail & Related papers (2023-03-31T07:39:12Z) - Learning Transformations To Reduce the Geometric Shift in Object
Detection [60.20931827772482]
We tackle geometric shifts emerging from variations in the image capture process.
We introduce a self-training approach that learns a set of geometric transformations to minimize these shifts.
We evaluate our method on two different shifts, i.e., a camera's field of view (FoV) change and a viewpoint change.
arXiv Detail & Related papers (2023-01-13T11:55:30Z) - Self-Pair: Synthesizing Changes from Single Source for Object Change
Detection in Remote Sensing Imagery [6.586756080460231]
We train a change detector using two spatially unrelated images with corresponding semantic labels such as building.
We show that manipulating the source image as an after-image is crucial to the performance of change detection.
Our method outperforms existing methods based on single-temporal supervision.
arXiv Detail & Related papers (2022-12-20T13:26:42Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
Recent advances in deep learning have led to the development of accurate and efficient models for various computer vision applications.
Learning highly accurate models relies on the availability of datasets with a large number of annotated images.
Due to this, model performance drops drastically when evaluated on label-scarce datasets having visually distinct images.
arXiv Detail & Related papers (2021-05-27T23:34:06Z) - Finding It at Another Side: A Viewpoint-Adapted Matching Encoder for
Change Captioning [41.044241265804125]
We propose a novel visual encoder to explicitly distinguish viewpoint changes from semantic changes in the change captioning task.
We also propose a novel reinforcement learning process to fine-tune the attention directly with language evaluation rewards.
Our method outperforms the state-of-the-art approaches by a large margin in both Spot-the-Diff and CLEVR-Change datasets.
arXiv Detail & Related papers (2020-09-30T00:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.