論文の概要: DASNet: Dual attentive fully convolutional siamese networks for change
detection of high resolution satellite images
- arxiv url: http://arxiv.org/abs/2003.03608v2
- Date: Wed, 11 Nov 2020 04:32:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-25 19:58:52.064357
- Title: DASNet: Dual attentive fully convolutional siamese networks for change
detection of high resolution satellite images
- Title(参考訳): DASNet:高解像度衛星画像の変更検出のための二重減衰完全畳み込みシムネットワーク
- Authors: Jie Chen, Ziyang Yuan, Jian Peng, Li Chen, Haozhe Huang, Jiawei Zhu,
Yu Liu, Haifeng Li
- Abstract要約: 研究の目的は、関心の変化情報を識別し、無関係な変更情報を干渉要因としてフィルタリングすることである。
近年、ディープラーニングの台頭により、変化検出のための新しいツールが提供され、目覚ましい結果が得られた。
我々は,高解像度画像における変化検出のための新しい手法,すなわち,二重注意型完全畳み込みシームズネットワーク(DASNet)を提案する。
- 参考スコア(独自算出の注目度): 17.839181739760676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change detection is a basic task of remote sensing image processing. The
research objective is to identity the change information of interest and filter
out the irrelevant change information as interference factors. Recently, the
rise of deep learning has provided new tools for change detection, which have
yielded impressive results. However, the available methods focus mainly on the
difference information between multitemporal remote sensing images and lack
robustness to pseudo-change information. To overcome the lack of resistance of
current methods to pseudo-changes, in this paper, we propose a new method,
namely, dual attentive fully convolutional Siamese networks (DASNet) for change
detection in high-resolution images. Through the dual-attention mechanism,
long-range dependencies are captured to obtain more discriminant feature
representations to enhance the recognition performance of the model. Moreover,
the imbalanced sample is a serious problem in change detection, i.e. unchanged
samples are much more than changed samples, which is one of the main reasons
resulting in pseudo-changes. We put forward the weighted double margin
contrastive loss to address this problem by punishing the attention to
unchanged feature pairs and increase attention to changed feature pairs. The
experimental results of our method on the change detection dataset (CDD) and
the building change detection dataset (BCDD) demonstrate that compared with
other baseline methods, the proposed method realizes maximum improvements of
2.1\% and 3.6\%, respectively, in the F1 score. Our Pytorch implementation is
available at https://github.com/lehaifeng/DASNet.
- Abstract(参考訳): 変化検出はリモートセンシング画像処理の基本的なタスクである。
研究の目的は、関心の変化情報を識別し、無関係な変更情報を干渉要因としてフィルタリングすることである。
近年、ディープラーニングの台頭により、変化検出のための新しいツールが提供され、目覚ましい結果が得られた。
しかし,本手法では,多時期リモートセンシング画像間の差分情報に着目し,疑似変化情報に対するロバスト性に欠ける。
疑似変化に対する現在の手法の抵抗の欠如を克服するため,本稿では,高解像度画像における変化検出のための2重減衰完全畳み込みシームズネットワーク(DASNet)を提案する。
デュアルアテンション機構により、長距離依存を捕捉してより識別性の高い特徴表現を取得し、モデルの認識性能を高める。
さらに、不均衡なサンプルは変化検出において深刻な問題であり、例えば、変化しないサンプルは変化したサンプルよりもはるかに多い。
重み付けされた二重マージン比較損失は、変化しない特徴対に対する注意を罰し、変化した特徴対に対する注意を高めることでこの問題に対処する。
提案手法は,他のベースライン法と比較して,F1スコアにおいてそれぞれ2.1\%と3.6\%の最大改善を実現していることを示す。
pytorchの実装はhttps://github.com/lehaifeng/dasnetで利用可能です。
関連論文リスト
- Show Me What and Where has Changed? Question Answering and Grounding for Remote Sensing Change Detection [82.65760006883248]
我々は,CDQAG (Change Detection Question Answering and Grounding) という新しいタスクを導入する。
CDQAGは、解釈可能なテキスト回答と直感的な視覚的証拠を提供することで、従来の変更検出タスクを拡張している。
QAG-360Kと呼ばれる最初のCDQAGベンチマークデータセットを構築し、360K以上の質問、テキスト回答、およびそれに対応する高品質な視覚マスクを含む。
論文 参考訳(メタデータ) (2024-10-31T11:20:13Z) - Enhancing Perception of Key Changes in Remote Sensing Image Change Captioning [49.24306593078429]
KCFI(Key Change Features and Instruction-tuned)によるリモートセンシング画像変換キャプションのための新しいフレームワークを提案する。
KCFIは、バイテンポラルリモートセンシング画像特徴を抽出するViTsエンコーダと、重要な変化領域を識別するキー特徴知覚器と、画素レベルの変化検出デコーダとを含む。
提案手法の有効性を検証するため,LEVIR-CCデータセット上のいくつかの最新の変更キャプション手法との比較を行った。
論文 参考訳(メタデータ) (2024-09-19T09:33:33Z) - Novel Change Detection Framework in Remote Sensing Imagery Using Diffusion Models and Structural Similarity Index (SSIM) [0.0]
変化検出はリモートセンシングにおいて重要な課題であり、環境変化、都市の成長、災害影響のモニタリングを可能にする。
近年の機械学習、特に拡散モデルのような生成モデルの発展は、変化検出精度を高める新たな機会を提供する。
本稿では,安定拡散モデルの強度と構造類似度指数(SSIM)を組み合わせ,頑健で解釈可能な変化マップを作成する新しい変化検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-20T07:54:08Z) - ChangeBind: A Hybrid Change Encoder for Remote Sensing Change Detection [16.62779899494721]
変化検出(CD)は、異なる時刻スタンプで同じ地理的領域間の意味的変化を検出することを目的とした、リモートセンシング(RS)の基本課題である。
本稿では,バイテンポラルRS画像における意味変化をエンコードする,効果的なSiameseベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-26T17:47:14Z) - Segment Any Change [64.23961453159454]
本稿では、ゼロショット予測と、見えない変更タイプやデータ分布の一般化をサポートする新しいタイプの変更検出モデルを提案する。
AnyChangeは、トレーニング不要適応法、バイテンポラルラテントマッチングを通じてSAM(Se segment Any Model)上に構築されます。
また、AnyChangeのゼロショットオブジェクト中心の変更検出機能を有効にするためのポイントクエリ機構を提案する。
論文 参考訳(メタデータ) (2024-02-02T07:17:39Z) - MS-Former: Memory-Supported Transformer for Weakly Supervised Change
Detection with Patch-Level Annotations [50.79913333804232]
弱い教師付き変化検出のためのメモリ支援トランス (MS-Former) を提案する。
MS-Former は双方向注意ブロック (BAB) とパッチレベルの監視スキーム (PSS) から構成される。
3つのベンチマークデータセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-11-16T09:57:29Z) - Transformer-based Multimodal Change Detection with Multitask Consistency Constraints [10.906283981247796]
現在の変化検出方法は、意味変化検出タスクと高さ変化検出タスクのマルチタスク競合に対処する。
そこで我々は,クロスアテンションにより,多次元入力間の共有表現を学習する効率的なトランスフォーマーネットワークを提案する。
提案手法は,5つの現状変化検出手法と比較して,意味的および高さ変化検出の観点から,一貫したマルチタスク優位性を示す。
論文 参考訳(メタデータ) (2023-10-13T17:38:45Z) - Variational Voxel Pseudo Image Tracking [127.46919555100543]
不確実性推定は、ロボット工学や自律運転といった重要な問題にとって重要なタスクである。
本稿では,3次元物体追跡のためのVoxel Pseudo Image Tracking (VPIT) の変分ニューラルネットワークによるバージョンを提案する。
論文 参考訳(メタデータ) (2023-02-12T13:34:50Z) - Self-Pair: Synthesizing Changes from Single Source for Object Change
Detection in Remote Sensing Imagery [6.586756080460231]
本研究では,2つの空間的無関係な画像を用いて変化検出器をトレーニングする。
本稿では,画像の残像としての操作が,変化検出の性能に不可欠であることを示す。
本手法は, 単一時間監視に基づく既存手法よりも優れる。
論文 参考訳(メタデータ) (2022-12-20T13:26:42Z) - dual unet:a novel siamese network for change detection with cascade
differential fusion [4.651756476458979]
本稿では,変化検出タスク,すなわちDual-UNetのための新しいSiameseニューラルネットワークを提案する。
従来のバイテンポラル画像の符号化とは対照的に,画素の空間的差分関係に着目したエンコーダ差分アテンションモジュールを設計する。
実験により、提案手法は、一般的な季節変化検出データセットにおいて、常に最も高度な手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-12T14:24:09Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
2つの空中画像が与えられた場合、セマンティックチェンジ検出は、土地被覆のバリエーションを特定し、それらの変化タイプをピクセルワイド境界で識別することを目的としている。
この問題は、正確な都市計画や天然資源管理など、多くの地球ビジョンに関連するタスクにおいて不可欠である。
本研究では, 広く異なる構造を持つモジュールから得られた特徴対を用いて意味変化を同定し, 同定するための非対称システマネットワーク(ASN)を提案する。
論文 参考訳(メタデータ) (2020-10-12T13:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。