論文の概要: 3D Object Detection from a Single Fisheye Image Without a Single Fisheye
Training Image
- arxiv url: http://arxiv.org/abs/2003.03759v3
- Date: Mon, 31 May 2021 05:56:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-25 14:23:55.552058
- Title: 3D Object Detection from a Single Fisheye Image Without a Single Fisheye
Training Image
- Title(参考訳): 単一魚眼訓練画像のない単一魚眼画像からの3次元物体検出
- Authors: Elad Plaut, Erez Ben Yaacov and Bat El Shlomo
- Abstract要約: 魚眼カメラから画像中の3次元物体を検出するために,リチリニア画像のみを用いて訓練された既存のモノクロ3次元物体検出モデルを使用する方法を示す。
合成データのベンチマークにより,パノラマにおけるモノクロ3次元物体検出法は,既存の手法よりも優れていた。
- 参考スコア(独自算出の注目度): 7.86363825307044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing monocular 3D object detection methods have been demonstrated on
rectilinear perspective images and fail in images with alternative projections
such as those acquired by fisheye cameras. Previous works on object detection
in fisheye images have focused on 2D object detection, partly due to the lack
of 3D datasets of such images. In this work, we show how to use existing
monocular 3D object detection models, trained only on rectilinear images, to
detect 3D objects in images from fisheye cameras, without using any fisheye
training data. We outperform the only existing method for monocular 3D object
detection in panoramas on a benchmark of synthetic data, despite the fact that
the existing method trains on the target non-rectilinear projection whereas we
train only on rectilinear images. We also experiment with an internal dataset
of real fisheye images.
- Abstract(参考訳): 既存のモノクロ3Dオブジェクト検出法は、直視画像上で実証されており、魚眼カメラで取得したような代替投影画像では失敗している。
魚眼画像における物体検出に関するこれまでの研究は、画像の3dデータセットの欠如による2dオブジェクト検出に重点を置いてきた。
本研究では,魚眼の訓練データを用いずに,魚眼カメラから画像中の3d物体を検出するために,直線的な画像のみを訓練した既存のモノクロ3d物体検出モデルをどのように利用するかを示す。
提案手法は, 直線的な画像のみを訓練しながら, 対象の非直線投影を訓練しているにもかかわらず, パノラマの単眼的3次元物体検出法を合成データのベンチマークで上回っている。
また、実際の魚眼画像の内部データセットを実験する。
関連論文リスト
- Learning Hand-Held Object Reconstruction from In-The-Wild Videos [19.16274394098004]
我々はObManデータセットから合成オブジェクトを用いてデータ駆動型3次元形状を学習する。
我々はこれらの間接的な3次元キューを用いて、単一のRGB画像から物体の3次元形状を予測する占有ネットワークを訓練する。
論文 参考訳(メタデータ) (2023-05-04T17:56:48Z) - 3D Object Aided Self-Supervised Monocular Depth Estimation [5.579605877061333]
本研究では,モノクロ3次元物体検出による動的物体の動きに対処する新しい手法を提案する。
具体的には、まず画像中の3Dオブジェクトを検出し、検出されたオブジェクトのポーズと動的ピクセル間の対応性を構築する。
このようにして、各ピクセルの深さは有意義な幾何学モデルによって学習することができる。
論文 参考訳(メタデータ) (2022-12-04T08:52:33Z) - Self-supervised 3D Object Detection from Monocular Pseudo-LiDAR [9.361704310981196]
単眼画像のみを用いた絶対深度予測と3次元物体検出手法を提案する。
その結果,提案手法は,KITTI 3Dデータセット上での他の既存手法を上回る性能を示した。
論文 参考訳(メタデータ) (2022-09-20T05:55:49Z) - MonoDistill: Learning Spatial Features for Monocular 3D Object Detection [80.74622486604886]
本稿では,LiDAR信号からの空間情報を単分子3D検出器に導入するための簡易かつ効果的な手法を提案する。
得られたデータを用いて、ベースラインモデルと同じアーキテクチャで3D検出器をトレーニングする。
実験の結果,提案手法はベースラインモデルの性能を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-01-26T09:21:41Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
射影モデルを用いて幾何学誘導深度推定を学習し, モノクル3次元物体検出を推し進める。
具体的には,モノクロ3次元物体検出ネットワークにおける2次元および3次元深度予測の投影モデルを用いた原理的幾何式を考案した。
本手法は, 適度なテスト設定において, 余分なデータを2.80%も加えることなく, 最先端単分子法の検出性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-29T12:30:39Z) - Disentangling and Vectorization: A 3D Visual Perception Approach for
Autonomous Driving Based on Surround-View Fisheye Cameras [3.485767750936058]
多次元ベクトルは、異なる次元と段階で生成される有効情報を含むことが提案されている。
実魚眼画像実験により,本手法は実時間で最先端の精度を達成できることが実証された。
論文 参考訳(メタデータ) (2021-07-19T13:24:21Z) - Monocular Differentiable Rendering for Self-Supervised 3D Object
Detection [21.825158925459732]
単分子画像からの3次元物体検出は、深さとスケールの射影的絡み合いにより不適切な問題である。
テクスチャ化された3次元形状の再構成と剛体物体のポーズ推定のための新しい自己教師手法を提案する。
本手法は,画像中の物体の3次元位置とメッシュを,異なるレンダリングと自己教師対象を用いて予測する。
論文 参考訳(メタデータ) (2020-09-30T09:21:43Z) - Kinematic 3D Object Detection in Monocular Video [123.7119180923524]
運動運動を注意深く利用して3次元位置決めの精度を向上させるモノクロ映像を用いた3次元物体検出法を提案する。
我々は、KITTI自動運転データセット内のモノクロ3次元物体検出とバードアイビュータスクの最先端性能を達成する。
論文 参考訳(メタデータ) (2020-07-19T01:15:12Z) - From Image Collections to Point Clouds with Self-supervised Shape and
Pose Networks [53.71440550507745]
2次元画像から3Dモデルを再構成することは、コンピュータビジョンの基本的な問題の一つである。
本研究では,1枚の画像から3次元オブジェクトを再構成する深層学習手法を提案する。
我々は,3次元点雲の再構成と推定ネットワークの自己教師方式の両方を学習する。
論文 参考訳(メタデータ) (2020-05-05T04:25:16Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
LIDARデータに対する高速な1段3次元物体検出法を提案する。
我々の手法の中核となる新規性は高速かつシングルパスアーキテクチャであり、どちらも3次元の物体を検出し、それらの形状を推定する。
提案手法は,ScanNetシーンのオブジェクト検出で5%,オープンデータセットでは3.4%の精度で結果が得られた。
論文 参考訳(メタデータ) (2020-04-02T17:48:50Z) - BirdNet+: End-to-End 3D Object Detection in LiDAR Bird's Eye View [117.44028458220427]
自動運転車のオンボード3Dオブジェクト検出は、LiDARデバイスが捉えた幾何学情報に依存することが多い。
本稿では,BEV画像のみから指向性3Dボックスを推測可能な,エンドツーエンドの3Dオブジェクト検出フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-09T15:08:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。