Nature-Inspired Optimization Algorithms: Challenges and Open Problems
- URL: http://arxiv.org/abs/2003.03776v1
- Date: Sun, 8 Mar 2020 13:00:04 GMT
- Title: Nature-Inspired Optimization Algorithms: Challenges and Open Problems
- Authors: Xin-She Yang
- Abstract summary: Problems in science and engineering can be formulated as optimization problems, subject to complex nonlinear constraints.
The solutions of highly nonlinear problems usually require sophisticated optimization algorithms, and traditional algorithms may struggle to deal with such problems.
A current trend is to use nature-inspired algorithms due to their flexibility and effectiveness.
- Score: 3.7692411550925673
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Many problems in science and engineering can be formulated as optimization
problems, subject to complex nonlinear constraints. The solutions of highly
nonlinear problems usually require sophisticated optimization algorithms, and
traditional algorithms may struggle to deal with such problems. A current trend
is to use nature-inspired algorithms due to their flexibility and
effectiveness. However, there are some key issues concerning nature-inspired
computation and swarm intelligence. This paper provides an in-depth review of
some recent nature-inspired algorithms with the emphasis on their search
mechanisms and mathematical foundations. Some challenging issues are identified
and five open problems are highlighted, concerning the analysis of algorithmic
convergence and stability, parameter tuning, mathematical framework, role of
benchmarking and scalability. These problems are discussed with the directions
for future research.
Related papers
- A Generalized Evolutionary Metaheuristic (GEM) Algorithm for Engineering Optimization [1.6589012298747952]
A major trend in recent years is the use of nature-inspired metaheustic algorithms (NIMA)
There are over 540 algorithms in the literature, and there is no unified framework to understand the search mechanisms of different algorithms.
We propose a generalized evolutionary metaheuristic algorithm to unify more than 20 different algorithms.
arXiv Detail & Related papers (2024-07-02T09:55:15Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
We propose a theoretical framework for aligning economic interests of different stakeholders in the online learning problems through contract design.
For the planning problem, we design an efficient dynamic programming algorithm to determine the optimal contracts against the far-sighted agent.
For the learning problem, we introduce a generic design of no-regret learning algorithms to untangle the challenges from robust design of contracts to the balance of exploration and exploitation.
arXiv Detail & Related papers (2024-07-01T16:53:00Z) - Nature-Inspired Algorithms in Optimization: Introduction, Hybridization
and Insights [1.6589012298747952]
Benchmarking is important in evaluating the performance of optimization algorithms.
This chapter focuses on the overview of optimization, nature-inspired algorithms and the role of hybridization.
arXiv Detail & Related papers (2023-08-30T11:33:22Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
This paper presents a critical analysis on the incorporation of algorithms based on neural networks into the classical optimization framework.
A comprehensive study is carried out to analyse the fundamental aspects of such algorithms, including performance, transferability, computational cost and to larger-sized instances.
arXiv Detail & Related papers (2022-05-03T07:54:56Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
Vehicle routing problem (VRP) is a typical discrete optimization problem.
Many studies consider learning-based optimization algorithms to solve VRP.
This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.
arXiv Detail & Related papers (2021-07-15T02:13:03Z) - Nature-Inspired Optimization Algorithms: Research Direction and Survey [0.0]
Nature-inspired algorithms are commonly used for solving the various optimization problems.
We classify nature-inspired algorithms as natural evolution based, swarm intelligence based, biological based, science based and others.
The purpose of this review is to present an exhaustive analysis of various nature-inspired algorithms based on its source of inspiration, basic operators, control parameters, features, variants and area of application where these algorithms have been successfully applied.
arXiv Detail & Related papers (2021-02-08T06:03:36Z) - A Survey On (Stochastic Fractal Search) Algorithm [0.0]
This paper presents a metaheuristic algorithm called Fractal Search, inspired by the natural phenomenon of growth based on a mathematical concept called the fractal.
This paper also focuses on the steps and some example applications of engineering design optimisation problems commonly used in the literature being applied to the proposed algorithm.
arXiv Detail & Related papers (2021-01-25T22:44:04Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z) - Mapping of Real World Problems to Nature Inspired Algorithm using Goal
based Classification and TRIZ [0.0]
A novel method based on TRIZ to map the real-world problems to nature problems is explained here.
For this framework to work, a novel classification of NIA based on the end goal that nature is trying to achieve is devised.
arXiv Detail & Related papers (2020-10-08T06:55:31Z) - The limits of min-max optimization algorithms: convergence to spurious
non-critical sets [82.74514886461257]
min-max optimization algorithms encounter problems far greater because of the existence of periodic cycles and similar phenomena.
We show that there exist algorithms that do not attract any points of the problem.
We illustrate such challenges in simple to almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost almost
arXiv Detail & Related papers (2020-06-16T10:49:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.