Nature-Inspired Algorithms in Optimization: Introduction, Hybridization
and Insights
- URL: http://arxiv.org/abs/2401.00976v1
- Date: Wed, 30 Aug 2023 11:33:22 GMT
- Title: Nature-Inspired Algorithms in Optimization: Introduction, Hybridization
and Insights
- Authors: Xin-She Yang
- Abstract summary: Benchmarking is important in evaluating the performance of optimization algorithms.
This chapter focuses on the overview of optimization, nature-inspired algorithms and the role of hybridization.
- Score: 1.6589012298747952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many problems in science and engineering are optimization problems, which may
require sophisticated optimization techniques to solve. Nature-inspired
algorithms are a class of metaheuristic algorithms for optimization, and some
algorithms or variants are often developed by hybridization. Benchmarking is
also important in evaluating the performance of optimization algorithms. This
chapter focuses on the overview of optimization, nature-inspired algorithms and
the role of hybridization. We will also highlight some issues with
hybridization of algorithms.
Related papers
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
gradient-based algorithms are widely used in bilevel optimization.
We introduce a without-replacement sampling based algorithm which achieves a faster convergence rate.
We validate our algorithms over both synthetic and real-world applications.
arXiv Detail & Related papers (2024-11-07T17:05:31Z) - A Generalized Evolutionary Metaheuristic (GEM) Algorithm for Engineering Optimization [1.6589012298747952]
A major trend in recent years is the use of nature-inspired metaheustic algorithms (NIMA)
There are over 540 algorithms in the literature, and there is no unified framework to understand the search mechanisms of different algorithms.
We propose a generalized evolutionary metaheuristic algorithm to unify more than 20 different algorithms.
arXiv Detail & Related papers (2024-07-02T09:55:15Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Introductory Studies of Swarm Intelligence Techniques [1.2930503923129208]
Swarm intelligence involves the collective study of individuals and their mutual interactions leading to intelligent behavior of the swarm.
The chapter presents various population-based SI algorithms, their fundamental structures along with their mathematical models.
arXiv Detail & Related papers (2022-09-26T16:29:55Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
This paper presents a critical analysis on the incorporation of algorithms based on neural networks into the classical optimization framework.
A comprehensive study is carried out to analyse the fundamental aspects of such algorithms, including performance, transferability, computational cost and to larger-sized instances.
arXiv Detail & Related papers (2022-05-03T07:54:56Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
The advantages of evolutionary algorithms with respect to traditional methods have been greatly discussed in the literature.
While particle swarms share such advantages, they outperform evolutionary algorithms in that they require lower computational cost and easier implementation.
This paper does not intend to study their tuning, general-purpose settings are taken from previous studies, and virtually the same algorithm is used to optimize a variety of notably different problems.
arXiv Detail & Related papers (2021-01-25T02:06:30Z) - Optimizing Optimizers: Regret-optimal gradient descent algorithms [9.89901717499058]
We study the existence, uniqueness and consistency of regret-optimal algorithms.
By providing first-order optimality conditions for the control problem, we show that regret-optimal algorithms must satisfy a specific structure in their dynamics.
We present fast numerical methods for approximating them, generating optimization algorithms which directly optimize their long-term regret.
arXiv Detail & Related papers (2020-12-31T19:13:53Z) - Benchmarking Meta-heuristic Optimization [0.0]
Many meta-heuristic algorithms are very efficient when solving nonlinear functions.
A meta-heuristic algorithm is a problem-independent technique that can be applied to a broad range of problems.
arXiv Detail & Related papers (2020-07-27T12:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.