Gradient-based adversarial attacks on categorical sequence models via
traversing an embedded world
- URL: http://arxiv.org/abs/2003.04173v3
- Date: Mon, 12 Oct 2020 17:31:40 GMT
- Title: Gradient-based adversarial attacks on categorical sequence models via
traversing an embedded world
- Authors: Ivan Fursov, Alexey Zaytsev, Nikita Kluchnikov, Andrey Kravchenko,
Evgeny Burnaev
- Abstract summary: We consider adversarial attacks on deep learning models with categorical sequences.
We handle these challenges using two black-box adversarial attacks.
Results for money transactions, medical fraud, and NLP datasets suggest that proposed methods generate reasonable adversarial sequences.
- Score: 11.711134497239332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models suffer from a phenomenon called adversarial attacks: we
can apply minor changes to the model input to fool a classifier for a
particular example. The literature mostly considers adversarial attacks on
models with images and other structured inputs. However, the adversarial
attacks for categorical sequences can also be harmful. Successful attacks for
inputs in the form of categorical sequences should address the following
challenges: (1) non-differentiability of the target function, (2) constraints
on transformations of initial sequences, and (3) diversity of possible
problems. We handle these challenges using two black-box adversarial attacks.
The first approach adopts a Monte-Carlo method and allows usage in any
scenario, the second approach uses a continuous relaxation of models and target
metrics, and thus allows usage of state-of-the-art methods for adversarial
attacks with little additional effort. Results for money transactions, medical
fraud, and NLP datasets suggest that proposed methods generate reasonable
adversarial sequences that are close to original ones but fool machine learning
models.
Related papers
- Multi-granular Adversarial Attacks against Black-box Neural Ranking Models [111.58315434849047]
We create high-quality adversarial examples by incorporating multi-granular perturbations.
We transform the multi-granular attack into a sequential decision-making process.
Our attack method surpasses prevailing baselines in both attack effectiveness and imperceptibility.
arXiv Detail & Related papers (2024-04-02T02:08:29Z) - Defense Against Model Extraction Attacks on Recommender Systems [53.127820987326295]
We introduce Gradient-based Ranking Optimization (GRO) to defend against model extraction attacks on recommender systems.
GRO aims to minimize the loss of the protected target model while maximizing the loss of the attacker's surrogate model.
Results show GRO's superior effectiveness in defending against model extraction attacks.
arXiv Detail & Related papers (2023-10-25T03:30:42Z) - NaturalAdversaries: Can Naturalistic Adversaries Be as Effective as
Artificial Adversaries? [61.58261351116679]
We introduce a two-stage adversarial example generation framework (NaturalAdversaries) for natural language understanding tasks.
It is adaptable to both black-box and white-box adversarial attacks based on the level of access to the model parameters.
Our results indicate these adversaries generalize across domains, and offer insights for future research on improving robustness of neural text classification models.
arXiv Detail & Related papers (2022-11-08T16:37:34Z) - Towards Generating Adversarial Examples on Mixed-type Data [32.41305735919529]
We propose a novel attack algorithm M-Attack, which can effectively generate adversarial examples in mixed-type data.
Based on M-Attack, attackers can attempt to mislead the targeted classification model's prediction, by only slightly perturbing both the numerical and categorical features in the given data samples.
Our generated adversarial examples can evade potential detection models, which makes the attack indeed insidious.
arXiv Detail & Related papers (2022-10-17T20:17:21Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
Deep neural networks (DNNs) are vulnerable to adversarial noise.
adversarial robustness can be improved by exploiting adversarial examples.
Models trained on seen types of adversarial examples generally cannot generalize well to unseen types of adversarial examples.
arXiv Detail & Related papers (2021-06-09T12:49:54Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
We investigate the transferability of adversarial examples for text classification models.
We propose a genetic algorithm to find an ensemble of models that can induce adversarial examples to fool almost all existing models.
We derive word replacement rules that can be used for model diagnostics from these adversarial examples.
arXiv Detail & Related papers (2020-11-17T10:45:05Z) - Asymptotic Behavior of Adversarial Training in Binary Classification [41.7567932118769]
Adversarial training is considered to be the state-of-the-art method for defense against adversarial attacks.
Despite being successful in practice, several problems in understanding performance of adversarial training remain open.
We derive precise theoretical predictions for the minimization of adversarial training in binary classification.
arXiv Detail & Related papers (2020-10-26T01:44:20Z) - Differentiable Language Model Adversarial Attacks on Categorical
Sequence Classifiers [0.0]
An adversarial attack paradigm explores various scenarios for the vulnerability of deep learning models.
We use a fine-tuning of a language model for adversarial attacks as a generator of adversarial examples.
Our model works for diverse datasets on bank transactions, electronic health records, and NLP datasets.
arXiv Detail & Related papers (2020-06-19T11:25:36Z) - Luring of transferable adversarial perturbations in the black-box
paradigm [0.0]
We present a new approach to improve the robustness of a model against black-box transfer attacks.
A removable additional neural network is included in the target model, and is designed to induce the textitluring effect.
Our deception-based method only needs to have access to the predictions of the target model and does not require a labeled data set.
arXiv Detail & Related papers (2020-04-10T06:48:36Z) - Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial
Perturbations [65.05561023880351]
Adversarial examples are malicious inputs crafted to induce misclassification.
This paper studies a complementary failure mode, invariance-based adversarial examples.
We show that defenses against sensitivity-based attacks actively harm a model's accuracy on invariance-based attacks.
arXiv Detail & Related papers (2020-02-11T18:50:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.