Towards Generating Adversarial Examples on Mixed-type Data
- URL: http://arxiv.org/abs/2210.09405v1
- Date: Mon, 17 Oct 2022 20:17:21 GMT
- Title: Towards Generating Adversarial Examples on Mixed-type Data
- Authors: Han Xu, Menghai Pan, Zhimeng Jiang, Huiyuan Chen, Xiaoting Li,
Mahashweta Das, Hao Yang
- Abstract summary: We propose a novel attack algorithm M-Attack, which can effectively generate adversarial examples in mixed-type data.
Based on M-Attack, attackers can attempt to mislead the targeted classification model's prediction, by only slightly perturbing both the numerical and categorical features in the given data samples.
Our generated adversarial examples can evade potential detection models, which makes the attack indeed insidious.
- Score: 32.41305735919529
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The existence of adversarial attacks (or adversarial examples) brings huge
concern about the machine learning (ML) model's safety issues. For many
safety-critical ML tasks, such as financial forecasting, fraudulent detection,
and anomaly detection, the data samples are usually mixed-type, which contain
plenty of numerical and categorical features at the same time. However, how to
generate adversarial examples with mixed-type data is still seldom studied. In
this paper, we propose a novel attack algorithm M-Attack, which can effectively
generate adversarial examples in mixed-type data. Based on M-Attack, attackers
can attempt to mislead the targeted classification model's prediction, by only
slightly perturbing both the numerical and categorical features in the given
data samples. More importantly, by adding designed regularizations, our
generated adversarial examples can evade potential detection models, which
makes the attack indeed insidious. Through extensive empirical studies, we
validate the effectiveness and efficiency of our attack method and evaluate the
robustness of existing classification models against our proposed attack. The
experimental results highlight the feasibility of generating adversarial
examples toward machine learning models in real-world applications.
Related papers
- PASA: Attack Agnostic Unsupervised Adversarial Detection using Prediction & Attribution Sensitivity Analysis [2.5347892611213614]
Deep neural networks for classification are vulnerable to adversarial attacks, where small perturbations to input samples lead to incorrect predictions.
We develop a practical method for this characteristic of model prediction and feature attribution to detect adversarial samples.
Our approach demonstrates competitive performance even when an adversary is aware of the defense mechanism.
arXiv Detail & Related papers (2024-04-12T21:22:21Z) - OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) are used to test the robustness of trained neural networks by distorting input data.
We introduce a self-supervised, computationally economical method for generating adversarial examples.
Our experiments consistently demonstrate the method is effective across various models, unseen data categories, and even defended models.
arXiv Detail & Related papers (2023-10-05T17:34:47Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
We propose a novel information measure, namely, Memorization Discrepancy, to explore the defense via the model-level information.
By implicitly transferring the changes in the data manipulation to that in the model outputs, Memorization Discrepancy can discover the imperceptible poison samples.
We thoroughly explore its properties and propose Discrepancy-aware Sample Correction (DSC) to defend against accumulative poisoning attacks.
arXiv Detail & Related papers (2023-06-06T14:45:24Z) - Can Adversarial Examples Be Parsed to Reveal Victim Model Information? [62.814751479749695]
In this work, we ask whether it is possible to infer data-agnostic victim model (VM) information from data-specific adversarial instances.
We collect a dataset of adversarial attacks across 7 attack types generated from 135 victim models.
We show that a simple, supervised model parsing network (MPN) is able to infer VM attributes from unseen adversarial attacks.
arXiv Detail & Related papers (2023-03-13T21:21:49Z) - Identifying Adversarially Attackable and Robust Samples [1.4213973379473654]
Adrial attacks insert small, imperceptible perturbations to input samples that cause large, undesired changes to the output of deep learning models.
This work introduces the notion of sample attackability, where we aim to identify samples that are most susceptible to adversarial attacks.
We propose a deep-learning-based detector to identify the adversarially attackable and robust samples in an unseen dataset for an unseen target model.
arXiv Detail & Related papers (2023-01-30T13:58:14Z) - Adversarial Examples for Unsupervised Machine Learning Models [71.81480647638529]
Adrial examples causing evasive predictions are widely used to evaluate and improve the robustness of machine learning models.
We propose a framework of generating adversarial examples for unsupervised models and demonstrate novel applications to data augmentation.
arXiv Detail & Related papers (2021-03-02T17:47:58Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
We investigate the transferability of adversarial examples for text classification models.
We propose a genetic algorithm to find an ensemble of models that can induce adversarial examples to fool almost all existing models.
We derive word replacement rules that can be used for model diagnostics from these adversarial examples.
arXiv Detail & Related papers (2020-11-17T10:45:05Z) - Asymptotic Behavior of Adversarial Training in Binary Classification [41.7567932118769]
Adversarial training is considered to be the state-of-the-art method for defense against adversarial attacks.
Despite being successful in practice, several problems in understanding performance of adversarial training remain open.
We derive precise theoretical predictions for the minimization of adversarial training in binary classification.
arXiv Detail & Related papers (2020-10-26T01:44:20Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z) - Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial
Perturbations [65.05561023880351]
Adversarial examples are malicious inputs crafted to induce misclassification.
This paper studies a complementary failure mode, invariance-based adversarial examples.
We show that defenses against sensitivity-based attacks actively harm a model's accuracy on invariance-based attacks.
arXiv Detail & Related papers (2020-02-11T18:50:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.