Hierarchical Kinematic Human Mesh Recovery
- URL: http://arxiv.org/abs/2003.04232v2
- Date: Tue, 14 Jul 2020 17:01:33 GMT
- Title: Hierarchical Kinematic Human Mesh Recovery
- Authors: Georgios Georgakis, Ren Li, Srikrishna Karanam, Terrence Chen, Jana
Kosecka, Ziyan Wu
- Abstract summary: We consider the problem of estimating a parametric model of 3D human mesh from a single image.
We propose a new technique for regression of human parametric model that is explicitly informed by the known hierarchical structure.
- Score: 30.348060841242628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of estimating a parametric model of 3D human mesh
from a single image. While there has been substantial recent progress in this
area with direct regression of model parameters, these methods only implicitly
exploit the human body kinematic structure, leading to sub-optimal use of the
model prior. In this work, we address this gap by proposing a new technique for
regression of human parametric model that is explicitly informed by the known
hierarchical structure, including joint interdependencies of the model. This
results in a strong prior-informed design of the regressor architecture and an
associated hierarchical optimization that is flexible to be used in conjunction
with the current standard frameworks for 3D human mesh recovery. We demonstrate
these aspects by means of extensive experiments on standard benchmark datasets,
showing how our proposed new design outperforms several existing and popular
methods, establishing new state-of-the-art results. By considering joint
interdependencies, our method is equipped to infer joints even under data
corruptions, which we demonstrate by conducting experiments under varying
degrees of occlusion.
Related papers
- 3D Hand Reconstruction via Aggregating Intra and Inter Graphs Guided by
Prior Knowledge for Hand-Object Interaction Scenario [8.364378460776832]
We propose a 3D hand reconstruction network combining the benefits of model-based and model-free approaches to balance accuracy and physical plausibility for hand-object interaction scenario.
Firstly, we present a novel MANO pose parameters regression module from 2D joints directly, which avoids the process of highly nonlinear mapping from abstract image feature.
arXiv Detail & Related papers (2024-03-04T05:11:26Z) - A Probabilistic Attention Model with Occlusion-aware Texture Regression
for 3D Hand Reconstruction from a Single RGB Image [5.725477071353354]
Deep learning approaches have shown promising results in 3D hand reconstruction from a single RGB image.
We propose a novel probabilistic model to achieve the robustness of model-based approaches.
We demonstrate the flexibility of the proposed probabilistic model to be trained in both supervised and weakly-supervised scenarios.
arXiv Detail & Related papers (2023-04-27T16:02:32Z) - Back to MLP: A Simple Baseline for Human Motion Prediction [59.18776744541904]
This paper tackles the problem of human motion prediction, consisting in forecasting future body poses from historically observed sequences.
We show that the performance of these approaches can be surpassed by a light-weight and purely architectural architecture with only 0.14M parameters.
An exhaustive evaluation on Human3.6M, AMASS and 3DPW datasets shows that our method, which we dub siMLPe, consistently outperforms all other approaches.
arXiv Detail & Related papers (2022-07-04T16:35:58Z) - Learned Vertex Descent: A New Direction for 3D Human Model Fitting [64.04726230507258]
We propose a novel optimization-based paradigm for 3D human model fitting on images and scans.
Our approach is able to capture the underlying body of clothed people with very different body shapes, achieving a significant improvement compared to state-of-the-art.
LVD is also applicable to 3D model fitting of humans and hands, for which we show a significant improvement to the SOTA with a much simpler and faster method.
arXiv Detail & Related papers (2022-05-12T17:55:51Z) - Distribution-Aware Single-Stage Models for Multi-Person 3D Pose
Estimation [29.430404703883084]
We present a novel Distribution-Aware Single-stage (DAS) model for tackling the challenging multi-person 3D pose estimation problem.
The proposed DAS model simultaneously localizes person positions and their corresponding body joints in the 3D camera space in a one-pass manner.
Comprehensive experiments on benchmarks CMU Panoptic and MuPoTS-3D demonstrate the superior efficiency of the proposed DAS model.
arXiv Detail & Related papers (2022-03-15T07:30:27Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
This paper focuses on the problem of 3D human reconstruction from 2D evidence.
We recast the problem as learning a mapping from the input to a distribution of plausible 3D poses.
arXiv Detail & Related papers (2021-08-26T17:55:11Z) - 3D Multi-bodies: Fitting Sets of Plausible 3D Human Models to Ambiguous
Image Data [77.57798334776353]
We consider the problem of obtaining dense 3D reconstructions of humans from single and partially occluded views.
We suggest that ambiguities can be modelled more effectively by parametrizing the possible body shapes and poses.
We show that our method outperforms alternative approaches in ambiguous pose recovery on standard benchmarks for 3D humans.
arXiv Detail & Related papers (2020-11-02T13:55:31Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
We propose Parametric Model-Conditioned Implicit Representation (PaMIR), which combines the parametric body model with the free-form deep implicit function.
We show that our method achieves state-of-the-art performance for image-based 3D human reconstruction in the cases of challenging poses and clothing types.
arXiv Detail & Related papers (2020-07-08T02:26:19Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth.
In this paper, we introduce body segmentation as critical supervision.
To improve the reconstruction with part segmentation, we propose a part-level differentiable part that enables part-based models to be supervised by part segmentation.
arXiv Detail & Related papers (2020-03-24T14:25:46Z) - RePose: Learning Deep Kinematic Priors for Fast Human Pose Estimation [17.0630180888369]
We propose a novel efficient and lightweight model for human pose estimation from a single image.
Our model is designed to achieve competitive results at a fraction of the number of parameters and computational cost of various state-of-the-art methods.
arXiv Detail & Related papers (2020-02-10T16:44:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.