A Probabilistic Attention Model with Occlusion-aware Texture Regression
for 3D Hand Reconstruction from a Single RGB Image
- URL: http://arxiv.org/abs/2304.14299v1
- Date: Thu, 27 Apr 2023 16:02:32 GMT
- Title: A Probabilistic Attention Model with Occlusion-aware Texture Regression
for 3D Hand Reconstruction from a Single RGB Image
- Authors: Zheheng Jiang, Hossein Rahmani, Sue Black, Bryan M. Williams
- Abstract summary: Deep learning approaches have shown promising results in 3D hand reconstruction from a single RGB image.
We propose a novel probabilistic model to achieve the robustness of model-based approaches.
We demonstrate the flexibility of the proposed probabilistic model to be trained in both supervised and weakly-supervised scenarios.
- Score: 5.725477071353354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep learning based approaches have shown promising results in 3D
hand reconstruction from a single RGB image. These approaches can be roughly
divided into model-based approaches, which are heavily dependent on the model's
parameter space, and model-free approaches, which require large numbers of 3D
ground truths to reduce depth ambiguity and struggle in weakly-supervised
scenarios. To overcome these issues, we propose a novel probabilistic model to
achieve the robustness of model-based approaches and reduced dependence on the
model's parameter space of model-free approaches. The proposed probabilistic
model incorporates a model-based network as a prior-net to estimate the prior
probability distribution of joints and vertices. An Attention-based Mesh
Vertices Uncertainty Regression (AMVUR) model is proposed to capture
dependencies among vertices and the correlation between joints and mesh
vertices to improve their feature representation. We further propose a learning
based occlusion-aware Hand Texture Regression model to achieve high-fidelity
texture reconstruction. We demonstrate the flexibility of the proposed
probabilistic model to be trained in both supervised and weakly-supervised
scenarios. The experimental results demonstrate our probabilistic model's
state-of-the-art accuracy in 3D hand and texture reconstruction from a single
image in both training schemes, including in the presence of severe occlusions.
Related papers
- Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
We introduce an untrained forward model residual block within the model-based architecture to match the data consistency in the measurement domain for each instance.
Our approach offers a unified solution that is less parameter-sensitive, requires no additional data, and enables simultaneous fitting of the forward model and reconstruction in a single pass.
arXiv Detail & Related papers (2024-03-07T19:02:13Z) - 3D Hand Reconstruction via Aggregating Intra and Inter Graphs Guided by
Prior Knowledge for Hand-Object Interaction Scenario [8.364378460776832]
We propose a 3D hand reconstruction network combining the benefits of model-based and model-free approaches to balance accuracy and physical plausibility for hand-object interaction scenario.
Firstly, we present a novel MANO pose parameters regression module from 2D joints directly, which avoids the process of highly nonlinear mapping from abstract image feature.
arXiv Detail & Related papers (2024-03-04T05:11:26Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Distribution-Aware Single-Stage Models for Multi-Person 3D Pose
Estimation [29.430404703883084]
We present a novel Distribution-Aware Single-stage (DAS) model for tackling the challenging multi-person 3D pose estimation problem.
The proposed DAS model simultaneously localizes person positions and their corresponding body joints in the 3D camera space in a one-pass manner.
Comprehensive experiments on benchmarks CMU Panoptic and MuPoTS-3D demonstrate the superior efficiency of the proposed DAS model.
arXiv Detail & Related papers (2022-03-15T07:30:27Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
This paper focuses on the problem of 3D human reconstruction from 2D evidence.
We recast the problem as learning a mapping from the input to a distribution of plausible 3D poses.
arXiv Detail & Related papers (2021-08-26T17:55:11Z) - 3D Multi-bodies: Fitting Sets of Plausible 3D Human Models to Ambiguous
Image Data [77.57798334776353]
We consider the problem of obtaining dense 3D reconstructions of humans from single and partially occluded views.
We suggest that ambiguities can be modelled more effectively by parametrizing the possible body shapes and poses.
We show that our method outperforms alternative approaches in ambiguous pose recovery on standard benchmarks for 3D humans.
arXiv Detail & Related papers (2020-11-02T13:55:31Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
We propose Parametric Model-Conditioned Implicit Representation (PaMIR), which combines the parametric body model with the free-form deep implicit function.
We show that our method achieves state-of-the-art performance for image-based 3D human reconstruction in the cases of challenging poses and clothing types.
arXiv Detail & Related papers (2020-07-08T02:26:19Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth.
In this paper, we introduce body segmentation as critical supervision.
To improve the reconstruction with part segmentation, we propose a part-level differentiable part that enables part-based models to be supervised by part segmentation.
arXiv Detail & Related papers (2020-03-24T14:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.