Learning a generative model for robot control using visual feedback
- URL: http://arxiv.org/abs/2003.04474v1
- Date: Tue, 10 Mar 2020 00:34:01 GMT
- Title: Learning a generative model for robot control using visual feedback
- Authors: Nishad Gothoskar, Miguel L\'azaro-Gredilla, Abhishek Agarwal, Yasemin
Bekiroglu, Dileep George
- Abstract summary: We introduce a novel formulation for incorporating visual feedback in controlling robots.
Inference in the model allows us to infer the robot state corresponding to target locations of the features.
We demonstrate the effectiveness of our method by executing grasping and tight-fit insertions on robots with inaccurate controllers.
- Score: 7.171234436165255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel formulation for incorporating visual feedback in
controlling robots. We define a generative model from actions to image
observations of features on the end-effector. Inference in the model allows us
to infer the robot state corresponding to target locations of the features.
This, in turn, guides motion of the robot and allows for matching the target
locations of the features in significantly fewer steps than state-of-the-art
visual servoing methods. The training procedure for our model enables effective
learning of the kinematics, feature structure, and camera parameters,
simultaneously. This can be done with no prior information about the robot,
structure, and cameras that observe it. Learning is done sample-efficiently and
shows strong generalization to test data. Since our formulation is modular, we
can modify components of our setup, like cameras and objects, and relearn them
quickly online. Our method can handle noise in the observed state and noise in
the controllers that we interact with. We demonstrate the effectiveness of our
method by executing grasping and tight-fit insertions on robots with inaccurate
controllers.
Related papers
- Differentiable Robot Rendering [45.23538293501457]
We introduce differentiable robot rendering, a method allowing the visual appearance of a robot body to be directly differentiable with respect to its control parameters.
We demonstrate its capability and usage in applications including reconstruction of robot poses from images and controlling robots through vision language models.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Latent Action Pretraining from Videos [156.88613023078778]
We introduce Latent Action Pretraining for general Action models (LAPA)
LAPA is an unsupervised method for pretraining Vision-Language-Action (VLA) models without ground-truth robot action labels.
We propose a method to learn from internet-scale videos that do not have robot action labels.
arXiv Detail & Related papers (2024-10-15T16:28:09Z) - Enhancing Robot Learning through Learned Human-Attention Feature Maps [6.724036710994883]
We think that embedding auxiliary information about focus point into robot learning would enhance efficiency and robustness of the learning process.
In this paper, we propose a novel approach to model and emulate the human attention with an approximate prediction model.
We test our approach on two learning tasks - object detection and imitation learning.
arXiv Detail & Related papers (2023-08-29T14:23:44Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - RoboCraft: Learning to See, Simulate, and Shape Elasto-Plastic Objects
with Graph Networks [32.00371492516123]
We present a model-based planning framework for modeling and manipulating elasto-plastic objects.
Our system, RoboCraft, learns a particle-based dynamics model using graph neural networks (GNNs) to capture the structure of the underlying system.
We show through experiments that with just 10 minutes of real-world robotic interaction data, our robot can learn a dynamics model that can be used to synthesize control signals to deform elasto-plastic objects into various target shapes.
arXiv Detail & Related papers (2022-05-05T20:28:15Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
We present a self-supervised method for model-based visual goal reaching.
Our approach learns entirely using offline, unlabeled data.
We find that this approach substantially outperforms both model-free and model-based prior methods.
arXiv Detail & Related papers (2020-12-30T23:59:09Z) - Caption Generation of Robot Behaviors based on Unsupervised Learning of
Action Segments [10.356412004005767]
Bridging robot action sequences and their natural language captions is an important task to increase explainability of human assisting robots.
In this paper, we propose a system for generating natural language captions that describe behaviors of human assisting robots.
arXiv Detail & Related papers (2020-03-23T03:44:56Z) - Morphology-Agnostic Visual Robotic Control [76.44045983428701]
MAVRIC is an approach that works with minimal prior knowledge of the robot's morphology.
We demonstrate our method on visually-guided 3D point reaching, trajectory following, and robot-to-robot imitation.
arXiv Detail & Related papers (2019-12-31T15:45:10Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.