Transparent Gatable Superconducting Shadow Junctions
- URL: http://arxiv.org/abs/2003.04487v1
- Date: Tue, 10 Mar 2020 01:36:12 GMT
- Title: Transparent Gatable Superconducting Shadow Junctions
- Authors: Sabbir A. Khan, Charalampos Lampadaris, Ajuan Cui, Lukas Stampfer, Yu
Liu, S. J. Pauka, Martin E. Cachaza, Elisabetta M. Fiordaliso, Jung-Hyun
Kang, Svetlana Korneychuk, Timo Mutas, Joachim E. Sestoft, Filip Krizek, Rawa
Tanta, M. C. Cassidy, Thomas S. Jespersen, Peter Krogstrup
- Abstract summary: Gate junctions are key elements in quantum devices based on hybrid semiconductor-superconductor materials.
We grow single crystalline InAs, InSb and $mathrmInAs_1-xSb_x$ nanowires with epitaxial superconductors and in-situ shadowed junctions in a single-step molecular beam epitaxy process.
- Score: 2.396595761899586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gate tunable junctions are key elements in quantum devices based on hybrid
semiconductor-superconductor materials. They serve multiple purposes ranging
from tunnel spectroscopy probes to voltage-controlled qubit operations in
gatemon and topological qubits. Common to all is that junction transparency
plays a critical role. In this study, we grow single crystalline InAs, InSb and
$\mathrm{InAs_{1-x}Sb_x}$ nanowires with epitaxial superconductors and in-situ
shadowed junctions in a single-step molecular beam epitaxy process. We
investigate correlations between fabrication parameters, junction morphologies,
and electronic transport properties of the junctions and show that the examined
in-situ shadowed junctions are of significantly higher quality than the etched
junctions. By varying the edge sharpness of the shadow junctions we show that
the sharpest edges yield the highest junction transparency for all three
examined semiconductors. Further, critical supercurrent measurements reveal an
extraordinarily high $I_\mathrm{C} R_\mathrm{N}$, close to the KO$-$2 limit.
This study demonstrates a promising engineering path towards reliable
gate-tunable superconducting qubits.
Related papers
- Methods for transverse and longitudinal spin-photon coupling in silicon
quantum dots with intrinsic spin-orbit effect [0.32301042014102566]
This paper examines the theory of both transverse and longitudinal spin-photon coupling.
We propose a method of coupling which uses the intrinsic spin-orbit interaction arising from orbital degeneracies in SiMOS qubits.
We also evaluate the feasibility of a longitudinal coupling driven by an AC modulation on the qubit.
arXiv Detail & Related papers (2023-08-24T08:04:28Z) - Fragmented superconductivity in the Hubbard model as solitons in
Ginzburg-Landau theory [58.720142291102135]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - High-fidelity two-qubit gates of hybrid superconducting-semiconducting
singlet-triplet qubits [0.0]
Superconductors induce long-range interactions between the spin degrees of freedom of quantum dots.
We show that this anisotropy is tunable and enables fast and high-fidelity two-qubit gates between singlet-triplet (ST) spin qubits.
Our design is immune to leakage of the quantum information into noncomputational states.
arXiv Detail & Related papers (2023-04-11T09:30:38Z) - Silicide-based Josephson field effect transistors for superconducting
qubits [0.0]
An alternative "gatemon" qubit has recently appeared, which uses hybrid superconducting/semiconducting (S/Sm) devices as gate-tuned Josephson junctions.
A scalable gatemon design could be made with CMOS Josephson Field-Effect Transistors as tunable weak link.
A successful gate modulation of Andreev current in a silicon-based transistor represents a step towards fully CMOS-integrated superconducting quantum computers.
arXiv Detail & Related papers (2022-09-06T18:00:03Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Probing defect densities at the edges and inside Josephson junctions of
superconducting qubits [58.720142291102135]
Tunneling defects in disordered materials form spurious two-level systems.
For superconducting qubits, defects in tunnel barriers of submicrometer-sized Josephson junctions couple strongest to the qubit.
We investigate whether defects appear predominantly at the edges or deep within the amorphous tunnel barrier of a junction.
arXiv Detail & Related papers (2021-08-14T15:01:35Z) - Epitaxial Superconductor-Semiconductor Two-Dimensional Systems for
Superconducting Quantum Circuits [0.0]
Materials innovation and design breakthroughs have increased functionality and coherence of qubits substantially over the past two decades.
We show by improving interface between InAs as a semiconductor and Al as a superconductor, one can reliably fabricate voltage-controlled Josephson junction field effect transistor (JJ-FET)
We present the anharmonicity and coupling strengths from one and two-photon absorption in a quantum two level system fabricated with a JJ-FET.
arXiv Detail & Related papers (2021-03-26T19:09:59Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Coherent superconducting qubits from a subtractive junction fabrication
process [48.7576911714538]
Josephson tunnel junctions are the centerpiece of almost any superconducting electronic circuit, including qubits.
In recent years, sub-micron scale overlap junctions have started to attract attention.
This work paves the way towards a more standardized process flow with advanced materials and growth processes, and constitutes an important step for large scale fabrication of superconducting quantum circuits.
arXiv Detail & Related papers (2020-06-30T14:52:14Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.