Online Tensor-Based Learning for Multi-Way Data
- URL: http://arxiv.org/abs/2003.04497v1
- Date: Tue, 10 Mar 2020 02:04:08 GMT
- Title: Online Tensor-Based Learning for Multi-Way Data
- Authors: Ali Anaissi, Basem Suleiman, Seid Miad Zandavi
- Abstract summary: A new efficient tensor-based feature extraction, named NeSGD, is proposed for online $CANDECOMP/PARAFAC$ decomposition.
Results show that the proposed methods significantly improved the classification error rates, were able to assimilate the changes in the positive data distribution over time, and maintained a high predictive accuracy in all case studies.
- Score: 1.0953917735844645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The online analysis of multi-way data stored in a tensor $\mathcal{X} \in
\mathbb{R} ^{I_1 \times \dots \times I_N} $ has become an essential tool for
capturing the underlying structures and extracting the sensitive features which
can be used to learn a predictive model. However, data distributions often
evolve with time and a current predictive model may not be sufficiently
representative in the future. Therefore, incrementally updating the
tensor-based features and model coefficients are required in such situations. A
new efficient tensor-based feature extraction, named NeSGD, is proposed for
online $CANDECOMP/PARAFAC$ (CP) decomposition. According to the new features
obtained from the resultant matrices of NeSGD, a new criteria is triggered for
the updated process of the online predictive model. Experimental evaluation in
the field of structural health monitoring using laboratory-based and real-life
structural datasets show that our methods provide more accurate results
compared with existing online tensor analysis and model learning. The results
showed that the proposed methods significantly improved the classification
error rates, were able to assimilate the changes in the positive data
distribution over time, and maintained a high predictive accuracy in all case
studies.
Related papers
- Online Tensor Inference [0.0]
Traditional offline learning, involving the storage and utilization of all data in each computational iteration, becomes impractical for high-dimensional tensor data.
Existing low-rank tensor methods lack the capability for statistical inference in an online fashion.
Our approach employs Gradient Descent (SGD) to enable efficient real-time data processing without extensive memory requirements.
arXiv Detail & Related papers (2023-12-28T16:37:48Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
In Online Continual Learning (OCL) a learning system receives a stream of data and sequentially performs prediction and training steps.
We introduce a probabilistic Bayesian online learning model by using a neural representation and a state space model over the linear predictor weights.
In experiments in multi-class classification we demonstrate the predictive ability of the model and its flexibility to capture non-stationarity.
arXiv Detail & Related papers (2023-06-14T11:41:42Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Online learning techniques for prediction of temporal tabular datasets
with regime changes [0.0]
We propose a modular machine learning pipeline for ranking predictions on temporal panel datasets.
The modularity of the pipeline allows the use of different models, including Gradient Boosting Decision Trees (GBDTs) and Neural Networks.
Online learning techniques, which require no retraining of models, can be used post-prediction to enhance the results.
arXiv Detail & Related papers (2022-12-30T17:19:00Z) - Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints [0.0]
This article introduces a novel nonparametric methodology for Generalized Linear Models.
It combines the strengths of the binary regression and latent variable formulations for categorical data.
It extends recently published parametric versions of the methodology and generalizes it.
arXiv Detail & Related papers (2021-10-11T04:49:59Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
We develop a model that retains the intrinsic multidimensional structure of the dataset.
To estimate the model parameters, an Alternating Least Squares algorithm is developed.
The proposed model is able to outperform benchmark models present in the forecasting literature.
arXiv Detail & Related papers (2020-02-11T11:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.