Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints
- URL: http://arxiv.org/abs/2110.04998v1
- Date: Mon, 11 Oct 2021 04:49:59 GMT
- Title: Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints
- Authors: K. P. Chowdhury
- Abstract summary: This article introduces a novel nonparametric methodology for Generalized Linear Models.
It combines the strengths of the binary regression and latent variable formulations for categorical data.
It extends recently published parametric versions of the methodology and generalizes it.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This article introduces a novel nonparametric methodology for Generalized
Linear Models which combines the strengths of the binary regression and latent
variable formulations for categorical data, while overcoming their
disadvantages. Requiring minimal assumptions, it extends recently published
parametric versions of the methodology and generalizes it. If the underlying
data generating process is asymmetric, it gives uniformly better prediction and
inference performance over the parametric formulation. Furthermore, it
introduces a new classification statistic utilizing which I show that overall,
it has better model fit, inference and classification performance than the
parametric version, and the difference in performance is statistically
significant especially if the data generating process is asymmetric. In
addition, the methodology can be used to perform model diagnostics for any
model specification. This is a highly useful result, and it extends existing
work for categorical model diagnostics broadly across the sciences. The
mathematical results also highlight important new findings regarding the
interplay of statistical significance and scientific significance. Finally, the
methodology is applied to various real-world datasets to show that it may
outperform widely used existing models, including Random Forests and Deep
Neural Networks with very few iterations.
Related papers
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
We investigate prediction sets for regression scenarios when the response variable, denoted by $Y$, resides in a manifold, and the covariable, denoted by X, lies in Euclidean space.
We prove the almost sure convergence of the empirical version of these regions on the manifold to their population counterparts.
arXiv Detail & Related papers (2023-10-12T10:56:25Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
We propose a technique for extracting submodels from singular models.
Our method enforces model identifiability during training.
We show how the method can be applied to more complex models like deep neural networks.
arXiv Detail & Related papers (2022-06-17T07:50:22Z) - A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of
Overparameterized Machine Learning [37.01683478234978]
The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field.
One of the most important riddles is the good empirical generalization of over parameterized models.
arXiv Detail & Related papers (2021-09-06T10:48:40Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
We analyze a corpus of models made publicly-available for a contest to predict the generalization accuracy of neural network (NN) models.
We identify what amounts to a Simpson's paradox: where "scale" metrics perform well overall but perform poorly on sub partitions of the data.
We present two novel shape metrics, one data-independent, and the other data-dependent, which can predict trends in the test accuracy of a series of NNs.
arXiv Detail & Related papers (2021-06-01T19:19:49Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Dimension Independent Generalization Error by Stochastic Gradient
Descent [12.474236773219067]
We present a theory on the generalization error of descent (SGD) solutions for both and locally convex loss functions.
We show that the generalization error does not depend on the $p$ dimension or depends on the low effective $p$logarithmic factor.
arXiv Detail & Related papers (2020-03-25T03:08:41Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
We develop a model that retains the intrinsic multidimensional structure of the dataset.
To estimate the model parameters, an Alternating Least Squares algorithm is developed.
The proposed model is able to outperform benchmark models present in the forecasting literature.
arXiv Detail & Related papers (2020-02-11T11:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.