論文の概要: Using machine learning to speed up new and upgrade detector studies: a
calorimeter case
- arxiv url: http://arxiv.org/abs/2003.05118v1
- Date: Wed, 11 Mar 2020 05:35:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 15:51:19.163109
- Title: Using machine learning to speed up new and upgrade detector studies: a
calorimeter case
- Title(参考訳): 機械学習を使って新しい発見器の研究をスピードアップし、アップグレードする:カロリメータケース
- Authors: F. Ratnikov, D. Derkach, A. Boldyrev, A. Shevelev, P. Fakanov, L.
Matyushin
- Abstract要約: 提案されたアプローチは、将来の検出器の設計概念(CDR)と技術設計(TDR)フェーズの両方に適用できる。
本稿では,LHCb検出器システラクラス3の電磁熱量計アップグレードプロジェクトを中心に,機械学習を用いた検出器R&Dとその最適化サイクルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we discuss the way advanced machine learning techniques allow
physicists to perform in-depth studies of the realistic operating modes of the
detectors during the stage of their design. Proposed approach can be applied to
both design concept (CDR) and technical design (TDR) phases of future detectors
and existing detectors if upgraded. The machine learning approaches may speed
up the verification of the possible detector configurations and will automate
the entire detector R\&D, which is often accompanied by a large number of
scattered studies. We present the approach of using machine learning for
detector R\&D and its optimisation cycle with an emphasis on the project of the
electromagnetic calorimeter upgrade for the LHCb detector\cite{lhcls3}. The
spatial reconstruction and time of arrival properties for the electromagnetic
calorimeter were demonstrated.
- Abstract(参考訳): 本稿では,先進的な機械学習技術を用いて,物理学者が設計段階における検出器の現実的な動作モードの詳細な研究を行う方法について論じる。
提案されたアプローチは、将来の検出器の設計概念(CDR)と技術設計(TDR)フェーズの両方に適用できる。
機械学習のアプローチは、可能性のある検出器構成の検証を高速化し、多くの散在する研究を伴う検出器r\&d全体を自動化する。
本稿では,lhcb検出器\cite{lhcls3}の電磁熱量計アップグレード計画に着目し,機械学習を用いた検出器r\&dとその最適化サイクルについて述べる。
電磁熱量計の空間再構成と到着時間について検討した。
関連論文リスト
- Deep(er) Reconstruction of Imaging Cherenkov Detectors with Swin Transformers and Normalizing Flow Models [0.0]
チェレンコフ検出器のイメージングは、核物理学と粒子物理学の実験において粒子識別(PID)に不可欠である。
本稿では,複雑なヒットパターンを示すDIRC検出器に着目し,JLabのGlueX実験において,ピオンとカオンのPIDにも使用される。
We present Deep(er)RICH, a extension of the seminal DeepRICH work, offered improve and faster PID than traditional methods。
論文 参考訳(メタデータ) (2024-07-10T05:37:02Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Design Methodology for Deep Out-of-Distribution Detectors in Real-Time
Cyber-Physical Systems [5.233831361879669]
アウト・オブ・ディストリビューション(OOD)検出器はMLモデルと並行して動作し、フラグ入力は望ましくない結果をもたらす可能性がある。
本研究は,組込みアプリケーションの精度および応答時間要求を満たすため,深部OOD検出器をチューニングするための設計手法を提案する。
論文 参考訳(メタデータ) (2022-07-29T14:06:27Z) - A machine-learning-based tool for last closed magnetic flux surface
reconstruction on tokamak [58.42256764043771]
トカマク装置による核融合発電は、クリーンエネルギーの持続可能な供給源として最も有望な方法の1つである。
トカマクの主な課題は、アクチュエータコイルと内部トカマクプラズマの相互作用によって決定される最後の閉じた磁束面(LCFS)を予測することである。
本研究では,実験データから自動的に学習する実験用超電導トカマク(EAST)からLCFSを再構築する機械学習モデルを提案する。
論文 参考訳(メタデータ) (2022-07-12T17:15:29Z) - Energy reconstruction for large liquid scintillator detectors with
machine learning techniques: aggregated features approach [0.6015898117103069]
本研究は, JUNOにおけるエネルギー再構成のための機械学習手法について述べる。
核融合炉核由来のJUNO$-$ニュートリノの主信号に対応する0-10MeVのエネルギー範囲における陽電子事象に焦点を当てた。
我々は,PMTによって収集された情報を用いて,集約された特徴に基づいて学習したブースト決定木と完全連結ディープニューラルネットワークについて考察する。
論文 参考訳(メタデータ) (2022-06-17T22:50:50Z) - Design of Detectors at the Electron Ion Collider with Artificial
Intelligence [0.0]
ECCEは、多目的最適化を用いて、EIC検出器のトラッキングシステムを設計する可能性を探っている。
本稿は、これらの技術の概要と、EIC提案における最近の進歩について述べる。
論文 参考訳(メタデータ) (2022-03-09T05:27:37Z) - Signal Processing and Machine Learning Techniques for Terahertz Sensing:
An Overview [89.09270073549182]
テラヘルツ(THz)信号生成と放射法は、無線システムの未来を形作っている。
THz 固有の信号処理技術は、THz 帯域の効率的な利用のために、この THz センシングへの関心を補う必要がある。
本稿では,信号前処理に着目した手法の概要を示す。
また,THz帯で有望な知覚能力を探索し,深層学習の有効性についても検討した。
論文 参考訳(メタデータ) (2021-04-09T01:38:34Z) - Ensemble and Random Collaborative Representation-Based Anomaly Detector
for Hyperspectral Imagery [133.83048723991462]
ハイパースペクトル異常検出(HAD)のための新しいアンサンブルおよびランダム共同表現型検出器(ERCRD)を提案する。
4つの実超スペクトルデータセットを用いた実験により,提案手法の精度と効率を10段階法と比較した。
論文 参考訳(メタデータ) (2021-01-06T11:23:51Z) - Self-Supervised Person Detection in 2D Range Data using a Calibrated
Camera [83.31666463259849]
2次元LiDARに基づく人検出器のトレーニングラベル(擬似ラベル)を自動生成する手法を提案する。
擬似ラベルで訓練または微調整された自己監視検出器が,手動アノテーションを用いて訓練された検出器を上回っていることを示した。
私達の方法は付加的な分類の努力なしで配置の間に人の探知器を改善する有効な方法です。
論文 参考訳(メタデータ) (2020-12-16T12:10:04Z) - Energy Aware Deep Reinforcement Learning Scheduling for Sensors
Correlated in Time and Space [62.39318039798564]
相関情報を利用するスケジューリング機構を提案する。
提案したメカニズムは、センサが更新を送信する頻度を決定することができる。
我々は,センサの寿命を大幅に延長できることを示した。
論文 参考訳(メタデータ) (2020-11-19T09:53:27Z) - Using Machine Learning to Speed Up and Improve Calorimeter R&D [0.7106986689736827]
物理性能の評価を遅くする2つの典型的な問題は、特にカロリー検出器技術や構成に対するアプローチである。
本稿では,検出器開発および最適化サイクルの精度向上と高速化を目的とした,高度な機械学習技術の利用について論じる。
論文 参考訳(メタデータ) (2020-03-27T14:44:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。