論文の概要: Building and Interpreting Deep Similarity Models
- arxiv url: http://arxiv.org/abs/2003.05431v1
- Date: Wed, 11 Mar 2020 17:46:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 13:47:13.967246
- Title: Building and Interpreting Deep Similarity Models
- Title(参考訳): 深い類似性モデルの構築と解釈
- Authors: Oliver Eberle, Jochen B\"uttner, Florian Kr\"autli, Klaus-Robert
M\"uller, Matteo Valleriani, Gr\'egoire Montavon
- Abstract要約: そこで本稿では,入力機能の観点から説明することで類似性を解釈する手法を提案する。
我々は,2組の入力特徴に対して類似度スコアを系統的に分解する,スケーラブルで理論的に確立された手法であるBiLRPを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many learning algorithms such as kernel machines, nearest neighbors,
clustering, or anomaly detection, are based on the concept of 'distance' or
'similarity'. Before similarities are used for training an actual machine
learning model, we would like to verify that they are bound to meaningful
patterns in the data. In this paper, we propose to make similarities
interpretable by augmenting them with an explanation in terms of input
features. We develop BiLRP, a scalable and theoretically founded method to
systematically decompose similarity scores on pairs of input features. Our
method can be expressed as a composition of LRP explanations, which were shown
in previous works to scale to highly nonlinear functions. Through an extensive
set of experiments, we demonstrate that BiLRP robustly explains complex
similarity models, e.g. built on VGG-16 deep neural network features.
Additionally, we apply our method to an open problem in digital humanities:
detailed assessment of similarity between historical documents such as
astronomical tables. Here again, BiLRP provides insight and brings
verifiability into a highly engineered and problem-specific similarity model.
- Abstract(参考訳): カーネルマシン、近接する隣人、クラスタリング、異常検出などの多くの学習アルゴリズムは、「距離」や「類似性」の概念に基づいている。
類似性が実際の機械学習モデルのトレーニングに使用される前に、データの有意義なパターンに結び付いていることを確認したいと思います。
本稿では,入力特徴の点から説明することで類似性を解釈する手法を提案する。
我々は,2組の入力特徴に対して類似度スコアを系統的に分解する,スケーラブルで理論的に確立された手法であるBiLRPを開発した。
本手法は,高非線形関数にスケールするために先行研究で示されたlrp説明の合成として表現できる。
広範な実験を通して、BLRPが複雑な類似性モデル、例えばVGG-16のディープニューラルネットワーク機能をベースに構築されていることを実証する。
さらに,この手法をデジタル人文科学におけるオープン問題に適用し,天文表などの歴史的文書間の類似性に関する詳細な評価を行った。
ここでも、BiLRPは洞察を提供し、高度にエンジニアリングされた問題固有の類似性モデルに検証可能性をもたらす。
関連論文リスト
- Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - Surprisal Driven $k$-NN for Robust and Interpretable Nonparametric
Learning [1.4293924404819704]
我々は情報理論の観点から、隣り合う従来のアルゴリズムに新たな光を当てた。
単一モデルを用いた分類,回帰,密度推定,異常検出などのタスクに対する頑健で解釈可能なフレームワークを提案する。
我々の研究は、分類と異常検出における最先端の成果を達成することによって、アーキテクチャの汎用性を示す。
論文 参考訳(メタデータ) (2023-11-17T00:35:38Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - On the Joint Interaction of Models, Data, and Features [82.60073661644435]
本稿では,データとモデル間の相互作用を実験的に解析する新しいツールであるインタラクションテンソルを紹介する。
これらの観測に基づいて,特徴学習のための概念的枠組みを提案する。
この枠組みの下では、一つの仮説に対する期待された精度と一対の仮説に対する合意はどちらも閉形式で導出することができる。
論文 参考訳(メタデータ) (2023-06-07T21:35:26Z) - Do Neural Networks Trained with Topological Features Learn Different
Internal Representations? [1.418465438044804]
本研究では、トポロジカルな特徴で訓練されたモデルが、元の生データで学習したモデルと根本的に異なるデータの内部表現を学習するかどうかを検討する。
構造的には、トポロジカルな特徴に基づいて訓練・評価されたモデルの隠れ表現は、対応する生データに基づいて訓練・評価されたモデルと大きく異なることがわかった。
これは、生データに基づいてトレーニングされたニューラルネットワークが、予測を行う過程で限られたトポロジ的特徴を抽出することを意味すると推測する。
論文 参考訳(メタデータ) (2022-11-14T19:19:04Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Towards Model Agnostic Federated Learning Using Knowledge Distillation [9.947968358822951]
本研究では,モデル非依存通信プロトコルの理論的研究を開始する。
我々は,2つのエージェントが異なるカーネルを用いてカーネルレグレッションを実行しようとする設定に焦点を当てる。
我々の研究は驚くべき結果をもたらします -- 交互知識蒸留(AKD)を用いる最も自然なアルゴリズムは、過度に強い正則化を課します。
論文 参考訳(メタデータ) (2021-10-28T15:27:51Z) - Few-shot Visual Reasoning with Meta-analogical Contrastive Learning [141.2562447971]
本稿では,類似推論に頼って,数ショット(または低ショット)の視覚推論問題を解くことを提案する。
両領域の要素間の構造的関係を抽出し、類似学習と可能な限り類似するように強制する。
RAVENデータセット上での本手法の有効性を検証し, トレーニングデータが少ない場合, 最先端の手法より優れることを示す。
論文 参考訳(メタデータ) (2020-07-23T14:00:34Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
与えられた観測データから数学的方程式を発見するアルゴリズムについて述べる。
このアルゴリズムは遺伝的プログラミングとスパース回帰を組み合わせたものである。
解析方程式の発見や偏微分方程式(PDE)の発見にも用いられる。
論文 参考訳(メタデータ) (2020-04-03T17:21:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。