Learning Predictive Representations for Deformable Objects Using
Contrastive Estimation
- URL: http://arxiv.org/abs/2003.05436v1
- Date: Wed, 11 Mar 2020 17:55:15 GMT
- Title: Learning Predictive Representations for Deformable Objects Using
Contrastive Estimation
- Authors: Wilson Yan, Ashwin Vangipuram, Pieter Abbeel, Lerrel Pinto
- Abstract summary: We propose a new learning framework that jointly optimize both the visual representation model and the dynamics model.
We show substantial improvements over standard model-based learning techniques across our rope and cloth manipulation suite.
- Score: 83.16948429592621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using visual model-based learning for deformable object manipulation is
challenging due to difficulties in learning plannable visual representations
along with complex dynamic models. In this work, we propose a new learning
framework that jointly optimizes both the visual representation model and the
dynamics model using contrastive estimation. Using simulation data collected by
randomly perturbing deformable objects on a table, we learn latent dynamics
models for these objects in an offline fashion. Then, using the learned models,
we use simple model-based planning to solve challenging deformable object
manipulation tasks such as spreading ropes and cloths. Experimentally, we show
substantial improvements in performance over standard model-based learning
techniques across our rope and cloth manipulation suite. Finally, we transfer
our visual manipulation policies trained on data purely collected in simulation
to a real PR2 robot through domain randomization.
Related papers
- Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control [2.058941610795796]
This paper introduces a streamlined method for learning low-dimensional, physics-based models.
We validate our approach through simulations with various planar soft manipulators.
Thanks to the capability of the method of generating physically compatible models, the learned models can be straightforwardly combined with model-based control policies.
arXiv Detail & Related papers (2024-10-31T18:37:22Z) - Model-based Policy Optimization using Symbolic World Model [46.42871544295734]
The application of learning-based control methods in robotics presents significant challenges.
One is that model-free reinforcement learning algorithms use observation data with low sample efficiency.
We suggest approximating transition dynamics with symbolic expressions, which are generated via symbolic regression.
arXiv Detail & Related papers (2024-07-18T13:49:21Z) - Dynamic-Resolution Model Learning for Object Pile Manipulation [33.05246884209322]
We investigate how to learn dynamic and adaptive representations at different levels of abstraction to achieve the optimal trade-off between efficiency and effectiveness.
Specifically, we construct dynamic-resolution particle representations of the environment and learn a unified dynamics model using graph neural networks (GNNs)
We show that our method achieves significantly better performance than state-of-the-art fixed-resolution baselines at the gathering, sorting, and redistribution of granular object piles.
arXiv Detail & Related papers (2023-06-29T05:51:44Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object
Manipulation [135.10594078615952]
We introduce ACID, an action-conditional visual dynamics model for volumetric deformable objects.
A benchmark contains over 17,000 action trajectories with six types of plush toys and 78 variants.
Our model achieves the best performance in geometry, correspondence, and dynamics predictions.
arXiv Detail & Related papers (2022-03-14T04:56:55Z) - Learning Dynamics Models for Model Predictive Agents [28.063080817465934]
Model-Based Reinforcement Learning involves learning a textitdynamics model from data, and then using this model to optimise behaviour.
This paper sets out to disambiguate the role of different design choices for learning dynamics models, by comparing their performance to planning with a ground-truth model.
arXiv Detail & Related papers (2021-09-29T09:50:25Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
We present a self-supervised method for model-based visual goal reaching.
Our approach learns entirely using offline, unlabeled data.
We find that this approach substantially outperforms both model-free and model-based prior methods.
arXiv Detail & Related papers (2020-12-30T23:59:09Z) - Model-Based Inverse Reinforcement Learning from Visual Demonstrations [20.23223474119314]
We present a gradient-based inverse reinforcement learning framework that learns cost functions when given only visual human demonstrations.
The learned cost functions are then used to reproduce the demonstrated behavior via visual model predictive control.
We evaluate our framework on hardware on two basic object manipulation tasks.
arXiv Detail & Related papers (2020-10-18T17:07:53Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.