Model-Based Inverse Reinforcement Learning from Visual Demonstrations
- URL: http://arxiv.org/abs/2010.09034v2
- Date: Wed, 6 Jan 2021 19:12:17 GMT
- Title: Model-Based Inverse Reinforcement Learning from Visual Demonstrations
- Authors: Neha Das and Sarah Bechtle and Todor Davchev and Dinesh Jayaraman and
Akshara Rai and Franziska Meier
- Abstract summary: We present a gradient-based inverse reinforcement learning framework that learns cost functions when given only visual human demonstrations.
The learned cost functions are then used to reproduce the demonstrated behavior via visual model predictive control.
We evaluate our framework on hardware on two basic object manipulation tasks.
- Score: 20.23223474119314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scaling model-based inverse reinforcement learning (IRL) to real robotic
manipulation tasks with unknown dynamics remains an open problem. The key
challenges lie in learning good dynamics models, developing algorithms that
scale to high-dimensional state-spaces and being able to learn from both visual
and proprioceptive demonstrations. In this work, we present a gradient-based
inverse reinforcement learning framework that utilizes a pre-trained visual
dynamics model to learn cost functions when given only visual human
demonstrations. The learned cost functions are then used to reproduce the
demonstrated behavior via visual model predictive control. We evaluate our
framework on hardware on two basic object manipulation tasks.
Related papers
- SOLD: Reinforcement Learning with Slot Object-Centric Latent Dynamics [16.020835290802548]
Slot-Attention for Object-centric Latent Dynamics is a novel algorithm that learns object-centric dynamics models from pixel inputs.
We demonstrate that the structured latent space not only improves model interpretability but also provides a valuable input space for behavior models to reason over.
Our results show that SOLD outperforms DreamerV3, a state-of-the-art model-based RL algorithm, across a range of benchmark robotic environments.
arXiv Detail & Related papers (2024-10-11T14:03:31Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Masked World Models for Visual Control [90.13638482124567]
We introduce a visual model-based RL framework that decouples visual representation learning and dynamics learning.
We demonstrate that our approach achieves state-of-the-art performance on a variety of visual robotic tasks.
arXiv Detail & Related papers (2022-06-28T18:42:27Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
Reward function specification remains a major impediment for learning behaviors through deep reinforcement learning.
Visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents.
We develop a variational model-based adversarial imitation learning algorithm.
arXiv Detail & Related papers (2021-07-16T00:15:18Z) - 3D Neural Scene Representations for Visuomotor Control [78.79583457239836]
We learn models for dynamic 3D scenes purely from 2D visual observations.
A dynamics model, constructed over the learned representation space, enables visuomotor control for challenging manipulation tasks.
arXiv Detail & Related papers (2021-07-08T17:49:37Z) - Learning Visible Connectivity Dynamics for Cloth Smoothing [17.24004979796887]
We propose to learn a particle-based dynamics model from a partial point cloud observation.
To overcome the challenges of partial observability, we infer which visible points are connected on the underlying cloth mesh.
We show that our method greatly outperforms previous state-of-the-art model-based and model-free reinforcement learning methods in simulation.
arXiv Detail & Related papers (2021-05-21T15:03:29Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
We present a self-supervised method for model-based visual goal reaching.
Our approach learns entirely using offline, unlabeled data.
We find that this approach substantially outperforms both model-free and model-based prior methods.
arXiv Detail & Related papers (2020-12-30T23:59:09Z) - Learning Predictive Representations for Deformable Objects Using
Contrastive Estimation [83.16948429592621]
We propose a new learning framework that jointly optimize both the visual representation model and the dynamics model.
We show substantial improvements over standard model-based learning techniques across our rope and cloth manipulation suite.
arXiv Detail & Related papers (2020-03-11T17:55:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.