VSGNet: Spatial Attention Network for Detecting Human Object
Interactions Using Graph Convolutions
- URL: http://arxiv.org/abs/2003.05541v1
- Date: Wed, 11 Mar 2020 22:23:51 GMT
- Title: VSGNet: Spatial Attention Network for Detecting Human Object
Interactions Using Graph Convolutions
- Authors: Oytun Ulutan, A S M Iftekhar, B.S. Manjunath
- Abstract summary: Relative spatial reasoning and structural connections between objects are essential cues for analyzing interactions.
Proposed Visual-Spatial-Graph Network (VSGNet) architecture extracts visual features from human-object pairs.
VSGNet outperforms state-of-the-art solutions by 8% or 4 mAP in V-COCO and 16% or 3 mAP in HICO-DET.
- Score: 13.83595180218225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Comprehensive visual understanding requires detection frameworks that can
effectively learn and utilize object interactions while analyzing objects
individually. This is the main objective in Human-Object Interaction (HOI)
detection task. In particular, relative spatial reasoning and structural
connections between objects are essential cues for analyzing interactions,
which is addressed by the proposed Visual-Spatial-Graph Network (VSGNet)
architecture. VSGNet extracts visual features from the human-object pairs,
refines the features with spatial configurations of the pair, and utilizes the
structural connections between the pair via graph convolutions. The performance
of VSGNet is thoroughly evaluated using the Verbs in COCO (V-COCO) and HICO-DET
datasets. Experimental results indicate that VSGNet outperforms
state-of-the-art solutions by 8% or 4 mAP in V-COCO and 16% or 3 mAP in
HICO-DET.
Related papers
- Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection [57.883265488038134]
We propose a hierarchical graph interaction network termed HGINet for camouflaged object detection.
The network is capable of discovering imperceptible objects via effective graph interaction among the hierarchical tokenized features.
Our experiments demonstrate the superior performance of HGINet compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2024-08-27T12:53:25Z) - A Skeleton-aware Graph Convolutional Network for Human-Object
Interaction Detection [14.900704382194013]
We propose a skeleton-aware graph convolutional network for human-object interaction detection, named SGCN4HOI.
Our network exploits the spatial connections between human keypoints and object keypoints to capture their fine-grained structural interactions via graph convolutions.
It fuses such geometric features with visual features and spatial configuration features obtained from human-object pairs.
arXiv Detail & Related papers (2022-07-11T15:20:18Z) - Relation Regularized Scene Graph Generation [206.76762860019065]
Scene graph generation (SGG) is built on top of detected objects to predict object pairwise visual relations.
We propose a relation regularized network (R2-Net) which can predict whether there is a relationship between two objects.
Our R2-Net can effectively refine object labels and generate scene graphs.
arXiv Detail & Related papers (2022-02-22T11:36:49Z) - Exploiting Scene Graphs for Human-Object Interaction Detection [81.49184987430333]
Human-Object Interaction (HOI) detection is a fundamental visual task aiming at localizing and recognizing interactions between humans and objects.
We propose a novel method to exploit this information, through the scene graph, for the Human-Object Interaction (SG2HOI) detection task.
Our method, SG2HOI, incorporates the SG information in two ways: (1) we embed a scene graph into a global context clue, serving as the scene-specific environmental context; and (2) we build a relation-aware message-passing module to gather relationships from objects' neighborhood and transfer them into interactions.
arXiv Detail & Related papers (2021-08-19T09:40:50Z) - GTNet:Guided Transformer Network for Detecting Human-Object Interactions [10.809778265707916]
The human-object interaction (HOI) detection task refers to localizing humans, localizing objects, and predicting the interactions between each human-object pair.
For detecting HOI, it is important to utilize relative spatial configurations and object semantics to find salient spatial regions of images.
This issue is addressed by the novel self-attention based guided transformer network, GTNet.
arXiv Detail & Related papers (2021-08-02T02:06:33Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
We consider the problem of Human-Object Interaction (HOI) Detection, which aims to locate and recognize HOI instances in the form of human, action, object> in images.
We argue that multi-level consistencies among objects, actions and interactions are strong cues for generating semantic representations of rare or previously unseen HOIs.
Our model takes visual features of candidate human-object pairs and word embeddings of HOI labels as inputs, maps them into visual-semantic joint embedding space and obtains detection results by measuring their similarities.
arXiv Detail & Related papers (2020-08-14T09:11:18Z) - Visual Compositional Learning for Human-Object Interaction Detection [111.05263071111807]
Human-Object interaction (HOI) detection aims to localize and infer relationships between human and objects in an image.
It is challenging because an enormous number of possible combinations of objects and verbs types forms a long-tail distribution.
We devise a deep Visual Compositional Learning framework, which is a simple yet efficient framework to effectively address this problem.
arXiv Detail & Related papers (2020-07-24T08:37:40Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
We present a novel graph-based interactive reasoning model called Interactive Graph (abbr. in-Graph) to infer HOIs.
We construct a new framework to assemble in-Graph models for detecting HOIs, namely in-GraphNet.
Our framework is end-to-end trainable and free from costly annotations like human pose.
arXiv Detail & Related papers (2020-07-14T09:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.