Towards High-Fidelity 3D Face Reconstruction from In-the-Wild Images
Using Graph Convolutional Networks
- URL: http://arxiv.org/abs/2003.05653v3
- Date: Mon, 13 Jul 2020 08:41:09 GMT
- Title: Towards High-Fidelity 3D Face Reconstruction from In-the-Wild Images
Using Graph Convolutional Networks
- Authors: Jiangke Lin, Yi Yuan, Tianjia Shao, Kun Zhou
- Abstract summary: We introduce a method to reconstruct 3D facial shapes with high-fidelity textures from single-view images in-the-wild.
Our method can generate high-quality results and outperforms state-of-the-art methods in both qualitative and quantitative comparisons.
- Score: 32.859340851346786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Morphable Model (3DMM) based methods have achieved great success in
recovering 3D face shapes from single-view images. However, the facial textures
recovered by such methods lack the fidelity as exhibited in the input images.
Recent work demonstrates high-quality facial texture recovering with generative
networks trained from a large-scale database of high-resolution UV maps of face
textures, which is hard to prepare and not publicly available. In this paper,
we introduce a method to reconstruct 3D facial shapes with high-fidelity
textures from single-view images in-the-wild, without the need to capture a
large-scale face texture database. The main idea is to refine the initial
texture generated by a 3DMM based method with facial details from the input
image. To this end, we propose to use graph convolutional networks to
reconstruct the detailed colors for the mesh vertices instead of reconstructing
the UV map. Experiments show that our method can generate high-quality results
and outperforms state-of-the-art methods in both qualitative and quantitative
comparisons.
Related papers
- 3D-GANTex: 3D Face Reconstruction with StyleGAN3-based Multi-View Images and 3DDFA based Mesh Generation [0.8479659578608233]
This paper introduces a novel method for texture estimation from a single image by first using StyleGAN and 3D Morphable Models.
The result shows that the generated mesh is of high quality with near to accurate texture representation.
arXiv Detail & Related papers (2024-10-21T13:42:06Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
We present a novel framework that generates textured surface meshes from images.
Our approach begins by efficiently initializing the geometry and view-dependency appearance with a NeRF.
We jointly refine the appearance with geometry and bake it into texture images for real-time rendering.
arXiv Detail & Related papers (2023-03-03T17:14:44Z) - A Hierarchical Representation Network for Accurate and Detailed Face
Reconstruction from In-The-Wild Images [15.40230841242637]
We present a novel hierarchical representation network (HRN) to achieve accurate and detailed face reconstruction from a single image.
Our framework can be extended to a multi-view fashion by considering detail consistency of different views.
Our method outperforms the existing methods in both reconstruction accuracy and visual effects.
arXiv Detail & Related papers (2023-02-28T09:24:36Z) - Facial Geometric Detail Recovery via Implicit Representation [147.07961322377685]
We present a robust texture-guided geometric detail recovery approach using only a single in-the-wild facial image.
Our method combines high-quality texture completion with the powerful expressiveness of implicit surfaces.
Our method not only recovers accurate facial details but also decomposes normals, albedos, and shading parts in a self-supervised way.
arXiv Detail & Related papers (2022-03-18T01:42:59Z) - AvatarMe++: Facial Shape and BRDF Inference with Photorealistic
Rendering-Aware GANs [119.23922747230193]
We introduce the first method that is able to reconstruct render-ready 3D facial geometry and BRDF from a single "in-the-wild" image.
Our method outperforms the existing arts by a significant margin and reconstructs high-resolution 3D faces from a single low-resolution image.
arXiv Detail & Related papers (2021-12-11T11:36:30Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
We harness the power of Generative Adversarial Networks (GANs) and Deep Convolutional Neural Networks (DCNNs) to reconstruct the facial texture and shape from single images.
We demonstrate excellent results in photorealistic and identity preserving 3D face reconstructions and achieve for the first time, facial texture reconstruction with high-frequency details.
arXiv Detail & Related papers (2021-05-16T16:35:44Z) - OSTeC: One-Shot Texture Completion [86.23018402732748]
We propose an unsupervised approach for one-shot 3D facial texture completion.
The proposed approach rotates an input image in 3D and fill-in the unseen regions by reconstructing the rotated image in a 2D face generator.
We frontalize the target image by projecting the completed texture into the generator.
arXiv Detail & Related papers (2020-12-30T23:53:26Z) - AvatarMe: Realistically Renderable 3D Facial Reconstruction
"in-the-wild" [105.28776215113352]
AvatarMe is the first method that is able to reconstruct photorealistic 3D faces from a single "in-the-wild" image with an increasing level of detail.
It outperforms the existing arts by a significant margin and reconstructs authentic, 4K by 6K-resolution 3D faces from a single low-resolution image.
arXiv Detail & Related papers (2020-03-30T22:17:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.