論文の概要: Topological Effects on Attacks Against Vertex Classification
- arxiv url: http://arxiv.org/abs/2003.05822v1
- Date: Thu, 12 Mar 2020 14:37:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 13:55:41.163517
- Title: Topological Effects on Attacks Against Vertex Classification
- Title(参考訳): 頂点分類に対する攻撃のトポロジー効果
- Authors: Benjamin A. Miller and Mustafa \c{C}amurcu and Alexander J. Gomez and
Kevin Chan and Tina Eliassi-Rad
- Abstract要約: 本稿では,グラフの2つのトポロジ的特徴を考察し,これらの特徴がグラフを乱さなければならない量に与える影響について考察する。
トレーニングセットに特定の頂点が組み込まれている場合、敵の要求する摂動予算を実質的に満たすことが可能であることを示す。
特に簡単なターゲット(たった1つか2つの摂動の後に誤って分類されるもの)であっても、パフォーマンスの劣化ははるかに遅く、誤ったクラスにずっと低い確率を割り当てる。
- 参考スコア(独自算出の注目度): 61.62383779296796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vertex classification is vulnerable to perturbations of both graph topology
and vertex attributes, as shown in recent research. As in other machine
learning domains, concerns about robustness to adversarial manipulation can
prevent potential users from adopting proposed methods when the consequence of
action is very high. This paper considers two topological characteristics of
graphs and explores the way these features affect the amount the adversary must
perturb the graph in order to be successful. We show that, if certain vertices
are included in the training set, it is possible to substantially an
adversary's required perturbation budget. On four citation datasets, we
demonstrate that if the training set includes high degree vertices or vertices
that ensure all unlabeled nodes have neighbors in the training set, we show
that the adversary's budget often increases by a substantial factor---often a
factor of 2 or more---over random training for the Nettack poisoning attack.
Even for especially easy targets (those that are misclassified after just one
or two perturbations), the degradation of performance is much slower, assigning
much lower probabilities to the incorrect classes. In addition, we demonstrate
that this robustness either persists when recently proposed defenses are
applied, or is competitive with the resulting performance improvement for the
defender.
- Abstract(参考訳): 頂点分類は、最近の研究で示されているように、グラフトポロジーと頂点属性の両方の摂動に弱い。
他の機械学習領域と同様に、敵対的操作に対する堅牢性に関する懸念は、アクションの結果が非常に高い場合に、潜在的なユーザが提案手法を採用することを妨げる可能性がある。
本稿では,グラフの2つのトポロジ的特徴を考察し,これらの特徴がグラフを乱さなければならない量に与える影響について考察する。
トレーニングセットに特定の頂点が組み込まれている場合、敵の要求する摂動予算を実質的に満たすことができることを示す。
4つの引用データセットにおいて、もしトレーニングセットが、すべてのラベルされていないノードがトレーニングセットに隣り合うことを保証する高次頂点または頂点を含むならば、敵の予算が相当な要因で増加することが示されている。
特に簡単なターゲット(1つまたは2つの摂動の後に誤分類される)であっても、パフォーマンスの低下はずっと遅く、不正確なクラスにずっと低い確率を割り当てる。
さらに,この頑健性は,最近提案された防御が適用された場合でも持続するか,あるいはディフェンダーのパフォーマンス向上と競合するかを示す。
関連論文リスト
- Graph Transductive Defense: a Two-Stage Defense for Graph Membership Inference Attacks [50.19590901147213]
グラフニューラルネットワーク(GNN)は、さまざまな現実世界のアプリケーションにおいて、強力なグラフ学習機能を提供する。
GNNは、メンバーシップ推論攻撃(MIA)を含む敵攻撃に対して脆弱である
本稿では,グラフトランスダクティブ学習特性に合わせて,グラフトランスダクティブ・ディフェンス(GTD)を提案する。
論文 参考訳(メタデータ) (2024-06-12T06:36:37Z) - Multi-granular Adversarial Attacks against Black-box Neural Ranking Models [111.58315434849047]
多粒性摂動を取り入れた高品質な逆数例を作成する。
我々は,多粒体攻撃を逐次的意思決定プロセスに変換する。
本手法は,攻撃の有効性と非受容性の両方において,一般的なベースラインを超えている。
論文 参考訳(メタデータ) (2024-04-02T02:08:29Z) - HC-Ref: Hierarchical Constrained Refinement for Robust Adversarial
Training of GNNs [7.635985143883581]
コンピュータビジョンにおける敵の攻撃に対する最も効果的な防御機構の1つとされる敵の訓練は、GNNの堅牢性を高めるという大きな約束を持っている。
本稿では,GNNと下流分類器の対摂動性を高める階層的制約改善フレームワーク(HC-Ref)を提案する。
論文 参考訳(メタデータ) (2023-12-08T07:32:56Z) - Enhancing Robust Representation in Adversarial Training: Alignment and
Exclusion Criteria [61.048842737581865]
対人訓練 (AT) は, 頑健な特徴の学習を省略し, 対人的頑健さの低下を招いた。
非対称な負のコントラストと逆の注意によって、頑健な表現を得るためのATの一般的なフレームワークを提案する。
3つのベンチマークデータセットの実証評価により,ATの堅牢性を大幅に向上し,最先端の性能を実現することができた。
論文 参考訳(メタデータ) (2023-10-05T07:29:29Z) - Towards Reasonable Budget Allocation in Untargeted Graph Structure
Attacks via Gradient Debias [50.628150015907565]
クロスエントロピー損失関数は、分類タスクにおける摂動スキームを評価するために用いられる。
従来の手法ではノードレベルの分類モデルを攻撃する攻撃対象として負のクロスエントロピー損失を用いる。
本稿では、予算配分の観点から、これまでの不合理な攻撃目標について論じる。
論文 参考訳(メタデータ) (2023-03-29T13:02:02Z) - Let Graph be the Go Board: Gradient-free Node Injection Attack for Graph
Neural Networks via Reinforcement Learning [37.4570186471298]
そこで我々は,ブラックボックスノードインジェクション攻撃の問題を,潜在的に誤解を招くサロゲートモデルをトレーニングすることなく検討した。
被害者のモデルを直接クエリすることで、G2A2Cは極めて限られた攻撃予算で非常に悪意のあるノードを注入することを学ぶ。
提案したG2A2Cは,既存の攻撃者よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-19T19:37:22Z) - What Does the Gradient Tell When Attacking the Graph Structure [44.44204591087092]
本稿では,GNNのメッセージパッシング機構により,攻撃者がクラス間エッジを増大させる傾向があることを示す。
異なるノードを接続することで、攻撃者はより効果的にノード機能を破損させ、そのような攻撃をより有利にする。
本研究では,攻撃効率と非受容性のバランスを保ち,より優れた非受容性を実現するために攻撃効率を犠牲にする,革新的な攻撃損失を提案する。
論文 参考訳(メタデータ) (2022-08-26T15:45:20Z) - Detection and Mitigation of Byzantine Attacks in Distributed Training [24.951227624475443]
ワーカノードの異常なビザンチン挙動は、トレーニングを脱線させ、推論の品質を損なう可能性がある。
最近の研究は、幅広い攻撃モデルを検討し、歪んだ勾配を補正するために頑健な集約と/または計算冗長性を探究している。
本研究では、強力な攻撃モデルについて検討する:$q$ omniscient adversaries with full knowledge of the defense protocol that can change from iteration to iteration to weak one: $q$ randomly selected adversaries with limited collusion abilities。
論文 参考訳(メタデータ) (2022-08-17T05:49:52Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。