論文の概要: W2S: Microscopy Data with Joint Denoising and Super-Resolution for
Widefield to SIM Mapping
- arxiv url: http://arxiv.org/abs/2003.05961v2
- Date: Mon, 24 Aug 2020 11:17:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 15:34:30.878807
- Title: W2S: Microscopy Data with Joint Denoising and Super-Resolution for
Widefield to SIM Mapping
- Title(参考訳): w2s:広視野simマッピングのための共振・超解像顕微鏡データ
- Authors: Ruofan Zhou, Majed El Helou, Daniel Sage, Thierry Laroche, Arne Seitz,
Sabine S\"usstrunk
- Abstract要約: 蛍光顕微鏡ライブセルイメージングでは、信号対雑音比と空間分解能の間に重要なトレードオフがある。
クリーンな高解像度(HR)画像を得るには、構造化照明顕微鏡(SIM)のような顕微鏡技術を使うか、デノナイジングと超高解像度(SR)アルゴリズムを適用することができる。
現状のSRネットワークはノイズの多い入力に対して非常に低性能であることを示す。
- 参考スコア(独自算出の注目度): 17.317001872212543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In fluorescence microscopy live-cell imaging, there is a critical trade-off
between the signal-to-noise ratio and spatial resolution on one side, and the
integrity of the biological sample on the other side. To obtain clean
high-resolution (HR) images, one can either use microscopy techniques, such as
structured-illumination microscopy (SIM), or apply denoising and
super-resolution (SR) algorithms. However, the former option requires multiple
shots that can damage the samples, and although efficient deep learning based
algorithms exist for the latter option, no benchmark exists to evaluate these
algorithms on the joint denoising and SR (JDSR) tasks. To study JDSR on
microscopy data, we propose such a novel JDSR dataset, Widefield2SIM (W2S),
acquired using a conventional fluorescence widefield and SIM imaging. W2S
includes 144,000 real fluorescence microscopy images, resulting in a total of
360 sets of images. A set is comprised of noisy low-resolution (LR) widefield
images with different noise levels, a noise-free LR image, and a corresponding
high-quality HR SIM image. W2S allows us to benchmark the combinations of 6
denoising methods and 6 SR methods. We show that state-of-the-art SR networks
perform very poorly on noisy inputs. Our evaluation also reveals that applying
the best denoiser in terms of reconstruction error followed by the best SR
method does not necessarily yield the best final result. Both quantitative and
qualitative results show that SR networks are sensitive to noise and the
sequential application of denoising and SR algorithms is sub-optimal. Lastly,
we demonstrate that SR networks retrained end-to-end for JDSR outperform any
combination of state-of-the-art deep denoising and SR networks
- Abstract(参考訳): 蛍光顕微鏡ライブセルイメージングでは、一方の信号対雑音比と他方の空間分解能との間に重要なトレードオフがあり、他方の生物学的試料の完全性がある。
クリーンな高解像度(HR)画像を得るには、構造化照明顕微鏡(SIM)のような顕微鏡技術を使うか、デノナイジングと超高解像度(SR)アルゴリズムを適用することができる。
しかし、前者のオプションではサンプルにダメージを与える複数のショットが必要であり、後者のオプションには効率的なディープラーニングベースのアルゴリズムが存在するが、これらのアルゴリズムを共同認知とSR(JDSR)タスクで評価するためのベンチマークは存在しない。
顕微鏡データにおけるJDSRの研究のために,従来の蛍光ワイドフィールドとSIMイメージングを用いて得られた新しいJDSRデータセットであるワイドフィールド2SIM(W2S)を提案する。
w2sには14万4000枚の蛍光顕微鏡画像が含まれており、合計360セットの画像が得られる。
ノイズレベルが異なる低解像度(LR)広視野画像と、ノイズフリーのLR画像と、それに対応する高画質のHRSIM画像とから構成される。
W2Sは6つの復調法と6つのSR法の組み合わせをベンチマークすることができる。
現状のSRネットワークはノイズの多い入力に対して非常に低性能であることを示す。
また, 最適解法と最適解法を併用した場合, 最適解法が必ずしも最良の結果をもたらすとは限らないことも明らかにした。
定量的および定性的な結果は、SRネットワークはノイズに敏感であり、デノイズ化とSRアルゴリズムの逐次適用は準最適であることを示している。
最後に、SRネットワークがJDSRのエンドツーエンドに再訓練され、最先端のDeep denoisingとSRネットワークの組合せよりも優れていることを示す。
関連論文リスト
- Zero-Shot Image Denoising for High-Resolution Electron Microscopy [28.34992348748098]
高分解能電子顕微鏡(HREM)イメージング技術は、広い範囲の物質を直接リアルタイムに可視化するための強力なツールである。
超低信号対雑音比(SNR)とデータ可用性の不足により、ノイズ除去の課題に直面している。
HREMのためのゼロショット自己教師型学習(ZS-SSL)フレームワークであるNoss2SRを提案する。
論文 参考訳(メタデータ) (2024-06-20T12:40:18Z) - SR-CACO-2: A Dataset for Confocal Fluorescence Microscopy Image Super-Resolution [7.770202118479678]
低解像度画像をアップスケーリングして高解像度画像(HR)を生成することで、画像品質の回復に、一像超解像(SISR)のマシン/ディープ学習法を適用することができる。
SISR法は、公開データの豊富さから、写真リアル画像にうまく応用されている。
我々は,3種類の蛍光マーカーに印加された低解像度と高解像度の画像対からなる,SR-CACO-2と呼ばれる大規模な走査共焦点顕微鏡データセットを提案する。
論文 参考訳(メタデータ) (2024-06-13T14:30:35Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
高磁場, 高分解能, 高信号-雑音比 (SNR) 磁気共鳴イメージング (MRI) 画像を得るために, GAN (Cycle Consistent Generative Adversarial Network) が実装されている。
Denoising Autoencoder(DAE)とCycle-GANをペアとアンペアのケースで訓練するために画像が使用された。
この研究は、古典的DAEを上回り、低磁場MRI画像を改善することができ、画像ペアを必要としない生成的ディープラーニングモデルの使用を実証する。
論文 参考訳(メタデータ) (2023-07-12T00:01:00Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
本稿では,ハイパースペクトル(HS)画像の難解化問題に対処する。
ランク付き低次元畳み込み集合(Re-ConvSet)を提案する。
次に、Re-ConvSetを広く使われているU-Netアーキテクチャに組み込んで、HS画像復号法を構築する。
論文 参考訳(メタデータ) (2022-07-09T13:35:12Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
スペックルの存在は画像品質を劣化させ、SAR画像理解アプリケーションの性能に悪影響を及ぼす。
本稿では,SAR脱種のための拡散確率モデルであるSAR-DDPMを紹介する。
提案手法は, 最先端の切り離し法と比較して, 定量化と定性化の両面で有意な改善を実現している。
論文 参考訳(メタデータ) (2022-06-09T14:00:26Z) - A No-Reference Deep Learning Quality Assessment Method for
Super-resolution Images Based on Frequency Maps [39.58198651685851]
本稿では,周波数マップに基づく非参照ディープラーニング画像品質評価手法を提案する。
まず、SRIの高周波マップ(HM)と低周波マップ(LM)を、Sobel演算子とスムーズな画像近似を用いて取得する。
提案手法は,選択した3つの超解像品質評価(SRQA)データベース上で比較したIQAモデルよりも優れている。
論文 参考訳(メタデータ) (2022-06-09T05:43:37Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
画像SRと画像再スケーリングのための統合フレームワークとして階層的条件フロー(HCFlow)を提案する。
HCFlowは、LR画像と残りの高周波成分の分布を同時にモデル化することにより、HRとLR画像ペア間のマッピングを学習する。
さらに性能を高めるために、知覚的損失やGAN損失などの他の損失と、トレーニングで一般的に使用される負の対数類似損失とを組み合わせる。
論文 参考訳(メタデータ) (2021-08-11T16:11:01Z) - Perception Consistency Ultrasound Image Super-resolution via
Self-supervised CycleGAN [63.49373689654419]
自己スーパービジョンとサイクル生成対向ネットワーク(CycleGAN)に基づく新しい知覚整合超音波画像超解像法を提案する。
まず,検査用超音波LR画像のHR父子とLR子を画像強調により生成する。
次に、LR-SR-LRとHR-LR-SRのサイクル損失と判別器の対角特性をフル活用して、より知覚的に一貫性のあるSR結果を生成する。
論文 参考訳(メタデータ) (2020-12-28T08:24:04Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z) - Benefiting from Bicubically Down-Sampled Images for Learning Real-World
Image Super-Resolution [22.339751911637077]
我々は、この不適切な問題を2つの比較的よく提示されたステップに分割することで、現実世界のSRを扱うことを提案する。
まず、実LR画像を教師付きで双対的にダウンサンプリングされた画像の空間に変換するネットワークを訓練する。
次に,2次元ダウンサンプル画像に基づいて学習した汎用SRネットワークを用いて,変換されたLR画像の超解像を行う。
論文 参考訳(メタデータ) (2020-07-06T20:27:58Z) - SAR2SAR: a semi-supervised despeckling algorithm for SAR images [3.9490074068698]
本稿では,自己超越型ディープラーニングアルゴリズムSAR2SARを提案する。
時間的変化の補償と、スペックル統計に適応した損失関数に基づいて、SAR非特異化に適応する戦略を提示する。
提案アルゴリズムの可能性を示すために,実画像における結果について考察する。
論文 参考訳(メタデータ) (2020-06-26T15:07:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。