論文の概要: Deep Domain-Adversarial Image Generation for Domain Generalisation
- arxiv url: http://arxiv.org/abs/2003.06054v1
- Date: Thu, 12 Mar 2020 23:17:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 15:17:34.585846
- Title: Deep Domain-Adversarial Image Generation for Domain Generalisation
- Title(参考訳): ドメイン一般化のための深部領域逆画像生成
- Authors: Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, Tao Xiang
- Abstract要約: マシンラーニングモデルは通常、ソースデータセットでトレーニングされたり、異なるディストリビューションのターゲットデータセットで評価されたりする際に、ドメインシフトの問題に悩まされる。
この問題を解決するために、ドメイン一般化(DG)手法は、訓練されたモデルが未知のドメインに一般化できるように、複数のソースドメインからのデータを活用することを目的としている。
我々はemphDeep Domain-Adversarial Image Generation (DDAIG)に基づく新しいDG手法を提案する。
- 参考スコア(独自算出の注目度): 115.21519842245752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models typically suffer from the domain shift problem when
trained on a source dataset and evaluated on a target dataset of different
distribution. To overcome this problem, domain generalisation (DG) methods aim
to leverage data from multiple source domains so that a trained model can
generalise to unseen domains. In this paper, we propose a novel DG approach
based on \emph{Deep Domain-Adversarial Image Generation} (DDAIG). Specifically,
DDAIG consists of three components, namely a label classifier, a domain
classifier and a domain transformation network (DoTNet). The goal for DoTNet is
to map the source training data to unseen domains. This is achieved by having a
learning objective formulated to ensure that the generated data can be
correctly classified by the label classifier while fooling the domain
classifier. By augmenting the source training data with the generated unseen
domain data, we can make the label classifier more robust to unknown domain
changes. Extensive experiments on four DG datasets demonstrate the
effectiveness of our approach.
- Abstract(参考訳): マシンラーニングモデルは通常、ソースデータセットでトレーニングされ、異なるディストリビューションのターゲットデータセットで評価される場合、ドメインシフトの問題に悩まされる。
この問題を解決するために、ドメイン一般化(DG)手法は、訓練されたモデルが未知のドメインに一般化できるように、複数のソースドメインのデータを活用することを目的としている。
本稿では,emph{deep Domain-Adversarial Image Generation} (DDAIG)に基づく新しいDG手法を提案する。
具体的には、DDAIGは3つのコンポーネント、すなわちラベル分類器、ドメイン分類器、ドメイン変換ネットワーク(DoTNet)から構成される。
dotnetの目標は、ソーストレーニングデータを見えないドメインにマップすることだ。
これは、生成されたデータがラベル分類器によって正しく分類され、ドメイン分類器を騙すことができるように、学習目的を定式化することで達成される。
生成した未知のドメインデータでソーストレーニングデータを増強することにより、未知のドメイン変更に対してラベル分類器をより堅牢にすることができる。
4つのdgデータセットに関する広範な実験により,本手法の有効性が示された。
関連論文リスト
- Noisy Universal Domain Adaptation via Divergence Optimization for Visual
Recognition [30.31153237003218]
ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送する、Noisy UniDAという新しいシナリオが提案されている。
ノイズUniDAで直面するすべての課題に同時に対処するために、マルチヘッド畳み込みニューラルネットワークフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-20T14:18:38Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Domain Adaptation for Real-World Single View 3D Reconstruction [1.611271868398988]
教師なしのドメイン適応は、ラベル付き合成ソースドメインからラベルなしの実際のターゲットドメインに知識を転送するために使用することができる。
本稿では,3次元モデルでは対象のドメインデータが教師されないが,クラスラベルでは教師されないという事実を生かして,新しいアーキテクチャを提案する。
その結果はShapeNetをソースドメインとして、Object Domain Suite(ODDS)データセット内のドメインをターゲットとして実行されます。
論文 参考訳(メタデータ) (2021-08-24T22:02:27Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA)は、ラベル付きデータが利用できないターゲットドメインでモデルを学習する問題を指す。
本稿では,視覚データセット中の潜在ドメインを自動的に発見することにより,udaの問題に対処する新しい深層アーキテクチャを提案する。
提案手法を公開ベンチマークで評価し,最先端のドメイン適応手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-03-25T14:33:33Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
ドメインフリードメイン一般化(DFDG)は、目に見えないテストドメインでより良い一般化性能を実現するモデル非依存の方法である。
DFDGは新しい戦略を用いてドメイン不変なクラス差別的特徴を学習する。
時系列センサと画像分類公開データセットの両方で競合性能を得る。
論文 参考訳(メタデータ) (2021-02-17T17:46:06Z) - Generation for adaption: a Gan-based approach for 3D Domain Adaption
inPoint Cloud [10.614067060304919]
Unsupervised Domain Adapt (UDA)は、ターゲットドメインラベルなしでそのような問題を解決することを目指しています。
本稿では,生成逆ネットワークを用いてソースドメインから合成データを生成する手法を提案する。
実験により,本手法は3つの一般的な3次元オブジェクト/シーンデータセットにおいて,最先端のUDA手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-02-15T07:24:10Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
ドメイン適応(DA)は、よくラベル付けされたソースドメイン上でトレーニングされたモデルを、異なる分散に横たわる未ラベルのターゲットドメインに適応することを目的としています。
本研究では,新規な生成的Few-shot Cross-Domain Adaptation (GFCA) アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-03-04T23:25:09Z) - Multi-source Domain Adaptation for Visual Sentiment Classification [92.53780541232773]
マルチソース・ドメイン適応(MDA)手法をMSGAN(Multi-source Sentiment Generative Adversarial Network)と呼ぶ。
複数のソースドメインからのデータを扱うために、MSGANはソースドメインとターゲットドメインの両方のデータが同じ分布を共有する、統一された感情潜在空間を見つけることを学ぶ。
4つのベンチマークデータセットで実施された大規模な実験により、MSGANは視覚的感情分類のための最先端のMDAアプローチよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2020-01-12T08:37:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。