Unification of the wave and guidance equations for spin 1/2
- URL: http://arxiv.org/abs/2003.06058v2
- Date: Wed, 30 Dec 2020 00:18:33 GMT
- Title: Unification of the wave and guidance equations for spin 1/2
- Authors: Peter Holland
- Abstract summary: We generalize previous unification of the Schrodinger and guidance equations.
A special case yields the unified theory for a spin 1/2 rigid rotator.
The theory is proved to be symmetrical under the Galileo group.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We generalize our previous unification of the Schrodinger and guidance
equations in a single inhomogeneous Schrodinger equation to a Riemannian
manifold with an external vector potential. A special case yields the unified
theory for a spin 1/2 rigid rotator. The theory is proved to be symmetrical
under the Galileo group, the unified field that integrates the particle and
guiding wave being a 2-spinor.
Related papers
- Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Stochastic Mechanics and the Unification of Quantum Mechanics with
Brownian Motion [0.0]
We show that non-relativistic quantum mechanics of a single spinless particle on a flat space can be described by a process that is rotated in the complex plane.
We then extend this theory to relativistic theories on integrals using the framework of second order geometry.
arXiv Detail & Related papers (2023-01-13T10:40:27Z) - Universal semiclassical equations based on the quantum metric [0.0]
We derive semiclassical equations of motion for an accelerated wavepacket in a two-band system.
We show that these equations can be formulated in terms of the static band geometry described by the quantum metric.
arXiv Detail & Related papers (2021-06-23T13:24:29Z) - Stochastic Quantization on Lorentzian Manifolds [0.0]
We embed Nelson's quantization in the Schwartz-Meyer second order geometry framework.
We derive differential equations for massive spin-0 test particles charged under scalar potentials, vector potentials and gravity.
arXiv Detail & Related papers (2021-01-29T13:03:09Z) - Rectification induced by geometry in two-dimensional quantum spin
lattices [58.720142291102135]
We address the role of geometrical asymmetry in the occurrence of spin rectification in two-dimensional quantum spin chains.
We show that geometrical asymmetry, along with inhomogeneous magnetic fields, can induce spin current rectification even in the XX model.
arXiv Detail & Related papers (2020-12-02T18:10:02Z) - Feynman Functional Integral in the Fokker Theory [62.997667081978825]
equivalence of two formulations of Fokker's quantum theory is proved.
The common basis for the two approaches is the generalized canonical form of Fokker's action.
arXiv Detail & Related papers (2020-11-11T12:10:01Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z) - Two dimensional electron gas in a non-Euclidean space [0.0]
A charged particle in the presence of a magnetic field is studied in the position dependent operator formalism.
The anharmonicity that shows up naturally from the theory is analogous to the corrections introduced by relativistic ones.
arXiv Detail & Related papers (2020-07-06T23:07:41Z) - Geometrical interpretation of the wave-pilot theory and manifestation of
the spinor fields [0.0]
We propose the new geometrical interpretation of the wave-pilot theory.
We show that the curvature and torsion of the spin vector line is determined by the space torsion of the absolute parallelism geometry.
arXiv Detail & Related papers (2020-06-28T20:57:42Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.