Rectification induced by geometry in two-dimensional quantum spin
lattices
- URL: http://arxiv.org/abs/2012.01368v1
- Date: Wed, 2 Dec 2020 18:10:02 GMT
- Title: Rectification induced by geometry in two-dimensional quantum spin
lattices
- Authors: Alessandra Chioquetta, Emmanuel Pereira, Gabriel T. Landi and Raphael
C. Drumond
- Abstract summary: We address the role of geometrical asymmetry in the occurrence of spin rectification in two-dimensional quantum spin chains.
We show that geometrical asymmetry, along with inhomogeneous magnetic fields, can induce spin current rectification even in the XX model.
- Score: 58.720142291102135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the role of geometrical asymmetry in the occurrence of spin
rectification in two-dimensional quantum spin chains subject to two reservoirs
at the boundaries, modeled by quantum master equations. We discuss the
differences in the rectification for some one-dimensional cases, and present
numerical results of the rectification coefficient R for different values of
the anisotropy parameter of the XXZ model, and different configurations of
boundary drives, including both local and non-local dissipators. Our results
also show that geometrical asymmetry, along with inhomogeneous magnetic fields,
can induce spin current rectification even in the XX model, indicating that the
phenomenon of rectification due to geometry may be of general occurrence in
quantum spin systems.
Related papers
- Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Quantum Scattering of Spinless Particles in Riemannian Manifolds [0.0]
Quantum mechanics is sensitive to the geometry of the underlying space.
We present a framework for quantum scattering of a non-relativistic particle confined to a two-dimensional space.
arXiv Detail & Related papers (2024-02-16T10:50:50Z) - Variational manifolds for ground states and scarred dynamics of blockade-constrained spin models on two and three dimensional lattices [0.0]
We introduce a variational manifold of simple tensor network states for the study of a family of constrained models that describe spin-1/2 systems.
Our method can be interpreted as a generalization of mean-field theory to constrained spin models.
arXiv Detail & Related papers (2023-11-15T13:52:21Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Penrose dodecahedron, Witting configuration and quantum entanglement [55.2480439325792]
A model with two entangled spin-3/2 particles based on geometry of dodecahedron was suggested by Roger Penrose.
The model was later reformulated using so-called Witting configuration with 40 rays in 4D Hilbert space.
Two entangled systems with quantum states described by Witting configurations are discussed in presented work.
arXiv Detail & Related papers (2022-08-29T14:46:44Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Geometry-induced Monopole Magnetic Field and Quantum Spin Hall Effect [7.6280835896399966]
A relativistic particle confined to a nontrivial M"obius surface is studied.
We find a geometric gauge potential that results from the rotation transformation of the local frame moving on M"obius strip.
As potential applications, effective monopole magnetic fields and spin Hall phenomena can be generated and manipulated by designing geometries and topologies of two-dimensional nanodevices.
arXiv Detail & Related papers (2021-09-19T13:55:16Z) - A quantum walk simulation of extra dimensions with warped geometry [0.0]
We investigate the properties of a quantum walk which can simulate the behavior of a spin $1/2$ particle in a model with an ordinary spatial dimension.
In particular, we observe that the probability distribution becomes, at large time steps, concentrated near the "low energy" brane.
In this way, we obtain a localization effect whose strength is controlled by a warp coefficient.
arXiv Detail & Related papers (2021-05-04T09:06:32Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.