MixPoet: Diverse Poetry Generation via Learning Controllable Mixed
Latent Space
- URL: http://arxiv.org/abs/2003.06094v1
- Date: Fri, 13 Mar 2020 03:31:29 GMT
- Title: MixPoet: Diverse Poetry Generation via Learning Controllable Mixed
Latent Space
- Authors: Xiaoyuan Yi, Ruoyu Li, Cheng Yang, Wenhao Li, Maosong Sun
- Abstract summary: We propose MixPoet, a novel model that absorbs multiple factors to create various styles and promote diversity.
Based on a semi-supervised variational autoencoder, our model disentangles the latent space into some subspaces, with each conditioned on one influence factor by adversarial training.
Experiment results on Chinese poetry demonstrate that MixPoet improves both diversity and quality against three state-of-the-art models.
- Score: 79.70053419040902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an essential step towards computer creativity, automatic poetry generation
has gained increasing attention these years. Though recent neural models make
prominent progress in some criteria of poetry quality, generated poems still
suffer from the problem of poor diversity. Related literature researches show
that different factors, such as life experience, historical background, etc.,
would influence composition styles of poets, which considerably contributes to
the high diversity of human-authored poetry. Inspired by this, we propose
MixPoet, a novel model that absorbs multiple factors to create various styles
and promote diversity. Based on a semi-supervised variational autoencoder, our
model disentangles the latent space into some subspaces, with each conditioned
on one influence factor by adversarial training. In this way, the model learns
a controllable latent variable to capture and mix generalized factor-related
properties. Different factor mixtures lead to diverse styles and hence further
differentiate generated poems from each other. Experiment results on Chinese
poetry demonstrate that MixPoet improves both diversity and quality against
three state-of-the-art models.
Related papers
- Understanding Literary Texts by LLMs: A Case Study of Ancient Chinese Poetry [9.970908656435066]
In genres such as poetry, jokes, and short stories, numerous AI tools have emerged, offering refreshing new perspectives.
evaluating literary works is often complex and hard to fully quantify, which directly hinders the further development of AI creation.
This paper attempts to explore the mysteries of literary texts from the perspective of large language models.
arXiv Detail & Related papers (2024-08-22T04:25:06Z) - Evaluating Diversity in Automatic Poetry Generation [25.53206868552533]
We evaluate the diversity of automatically generated poetry along structural, lexical, semantic and stylistic dimensions.
We find that current automatic poetry systems are considerably underdiverse along multiple dimensions.
Our identified limitations may serve as the basis for more genuinely diverse future poetry generation models.
arXiv Detail & Related papers (2024-06-21T16:03:21Z) - Diversify Question Generation with Retrieval-Augmented Style Transfer [68.00794669873196]
We propose RAST, a framework for Retrieval-Augmented Style Transfer.
The objective is to utilize the style of diverse templates for question generation.
We develop a novel Reinforcement Learning (RL) based approach that maximizes a weighted combination of diversity reward and consistency reward.
arXiv Detail & Related papers (2023-10-23T02:27:31Z) - Does Writing with Language Models Reduce Content Diversity? [16.22006159795341]
Large language models (LLMs) have led to a surge in collaborative writing with model assistance.
As different users incorporate suggestions from the same model, there is a risk of decreased diversity in the produced content.
We develop a set of diversity metrics and find that writing with InstructGPT (but not the GPT3) results in a statistically significant reduction in diversity.
arXiv Detail & Related papers (2023-09-11T02:16:47Z) - PoetryDiffusion: Towards Joint Semantic and Metrical Manipulation in
Poetry Generation [58.36105306993046]
Controllable text generation is a challenging and meaningful field in natural language generation (NLG)
In this paper, we pioneer the use of the Diffusion model for generating sonnets and Chinese SongCi poetry.
Our model outperforms existing models in automatic evaluation of semantic, metrical, and overall performance as well as human evaluation.
arXiv Detail & Related papers (2023-06-14T11:57:31Z) - Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship
Attribution [74.27826764855911]
We employ syllabic quantity as a base for deriving rhythmic features for the task of computational authorship attribution of Latin prose texts.
Our experiments, carried out on three different datasets, using two different machine learning methods, show that rhythmic features based on syllabic quantity are beneficial in discriminating among Latin prose authors.
arXiv Detail & Related papers (2021-10-27T06:25:31Z) - Semantics of European poetry is shaped by conservative forces: The
relationship between poetic meter and meaning in accentual-syllabic verse [0.0]
We provide the first large-scale formal evidence of the persistent association between poetic meter and semantics in 18-19th European literatures.
Our study traces this association through a series of clustering experiments using the abstracted semantic features of 150,000 poems.
arXiv Detail & Related papers (2021-09-15T08:20:01Z) - Don't Go Far Off: An Empirical Study on Neural Poetry Translation [13.194404923699782]
We present an empirical investigation for poetry translation along several dimensions.
We contribute a parallel dataset of poetry translations for several language pairs.
Our results show that multilingual fine-tuning on poetic text significantly outperforms multilingual fine-tuning on non-poetic text that is 35X larger in size.
arXiv Detail & Related papers (2021-09-07T10:00:44Z) - CCPM: A Chinese Classical Poetry Matching Dataset [50.90794811956129]
We propose a novel task to assess a model's semantic understanding of poetry by poem matching.
This task requires the model to select one line of Chinese classical poetry among four candidates according to the modern Chinese translation of a line of poetry.
To construct this dataset, we first obtain a set of parallel data of Chinese classical poetry and modern Chinese translation.
arXiv Detail & Related papers (2021-06-03T16:49:03Z) - Generating Major Types of Chinese Classical Poetry in a Uniformed
Framework [88.57587722069239]
We propose a GPT-2 based framework for generating major types of Chinese classical poems.
Preliminary results show this enhanced model can generate Chinese classical poems of major types with high quality in both form and content.
arXiv Detail & Related papers (2020-03-13T14:16:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.