Don't Go Far Off: An Empirical Study on Neural Poetry Translation
- URL: http://arxiv.org/abs/2109.02972v1
- Date: Tue, 7 Sep 2021 10:00:44 GMT
- Title: Don't Go Far Off: An Empirical Study on Neural Poetry Translation
- Authors: Tuhin Chakrabarty, Arkadiy Saakyan and Smaranda Muresan
- Abstract summary: We present an empirical investigation for poetry translation along several dimensions.
We contribute a parallel dataset of poetry translations for several language pairs.
Our results show that multilingual fine-tuning on poetic text significantly outperforms multilingual fine-tuning on non-poetic text that is 35X larger in size.
- Score: 13.194404923699782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite constant improvements in machine translation quality, automatic
poetry translation remains a challenging problem due to the lack of
open-sourced parallel poetic corpora, and to the intrinsic complexities
involved in preserving the semantics, style, and figurative nature of poetry.
We present an empirical investigation for poetry translation along several
dimensions: 1) size and style of training data (poetic vs. non-poetic),
including a zero-shot setup; 2) bilingual vs. multilingual learning; and 3)
language-family-specific models vs. mixed-multilingual models. To accomplish
this, we contribute a parallel dataset of poetry translations for several
language pairs. Our results show that multilingual fine-tuning on poetic text
significantly outperforms multilingual fine-tuning on non-poetic text that is
35X larger in size, both in terms of automatic metrics (BLEU, BERTScore) and
human evaluation metrics such as faithfulness (meaning and poetic style).
Moreover, multilingual fine-tuning on poetic data outperforms \emph{bilingual}
fine-tuning on poetic data.
Related papers
- Sonnet or Not, Bot? Poetry Evaluation for Large Models and Datasets [3.0040661953201475]
Large language models (LLMs) can now generate and recognize poetry.
We develop a task to evaluate how well LLMs recognize one aspect of English-language poetry.
We show that state-of-the-art LLMs can successfully identify both common and uncommon fixed poetic forms.
arXiv Detail & Related papers (2024-06-27T05:36:53Z) - Evaluating Diversity in Automatic Poetry Generation [25.53206868552533]
We evaluate the diversity of automatically generated poetry along structural, lexical, semantic and stylistic dimensions.
We find that current automatic poetry systems are considerably underdiverse along multiple dimensions.
Our identified limitations may serve as the basis for more genuinely diverse future poetry generation models.
arXiv Detail & Related papers (2024-06-21T16:03:21Z) - Towards a Deep Understanding of Multilingual End-to-End Speech
Translation [52.26739715012842]
We analyze representations learnt in a multilingual end-to-end speech translation model trained over 22 languages.
We derive three major findings from our analysis.
arXiv Detail & Related papers (2023-10-31T13:50:55Z) - Crossing the Threshold: Idiomatic Machine Translation through Retrieval
Augmentation and Loss Weighting [66.02718577386426]
We provide a simple characterization of idiomatic translation and related issues.
We conduct a synthetic experiment revealing a tipping point at which transformer-based machine translation models correctly default to idiomatic translations.
To improve translation of natural idioms, we introduce two straightforward yet effective techniques.
arXiv Detail & Related papers (2023-10-10T23:47:25Z) - ALBERTI, a Multilingual Domain Specific Language Model for Poetry
Analysis [0.0]
We present textscAlberti, the first multilingual pre-trained large language model for poetry.
We further trained multilingual BERT on a corpus of over 12 million verses from 12 languages.
textscAlberti achieves state-of-the-art results for German when compared to rule-based systems.
arXiv Detail & Related papers (2023-07-03T22:50:53Z) - Multi-lingual and Multi-cultural Figurative Language Understanding [69.47641938200817]
Figurative language permeates human communication, but is relatively understudied in NLP.
We create a dataset for seven diverse languages associated with a variety of cultures: Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili and Yoruba.
Our dataset reveals that each language relies on cultural and regional concepts for figurative expressions, with the highest overlap between languages originating from the same region.
All languages exhibit a significant deficiency compared to English, with variations in performance reflecting the availability of pre-training and fine-tuning data.
arXiv Detail & Related papers (2023-05-25T15:30:31Z) - Prose2Poem: The Blessing of Transformers in Translating Prose to Persian
Poetry [2.15242029196761]
We introduce a novel Neural Machine Translation (NMT) approach to translate prose to ancient Persian poetry.
We trained a Transformer model from scratch to obtain initial translations and pretrained different variations of BERT to obtain final translations.
arXiv Detail & Related papers (2021-09-30T09:04:11Z) - CCPM: A Chinese Classical Poetry Matching Dataset [50.90794811956129]
We propose a novel task to assess a model's semantic understanding of poetry by poem matching.
This task requires the model to select one line of Chinese classical poetry among four candidates according to the modern Chinese translation of a line of poetry.
To construct this dataset, we first obtain a set of parallel data of Chinese classical poetry and modern Chinese translation.
arXiv Detail & Related papers (2021-06-03T16:49:03Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
We use singular vector canonical correlation analysis to study what kind of information is induced from each source.
We observe that our representations embed typology and strengthen correlations with language relationships.
We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy.
arXiv Detail & Related papers (2020-04-30T16:25:39Z) - MixPoet: Diverse Poetry Generation via Learning Controllable Mixed
Latent Space [79.70053419040902]
We propose MixPoet, a novel model that absorbs multiple factors to create various styles and promote diversity.
Based on a semi-supervised variational autoencoder, our model disentangles the latent space into some subspaces, with each conditioned on one influence factor by adversarial training.
Experiment results on Chinese poetry demonstrate that MixPoet improves both diversity and quality against three state-of-the-art models.
arXiv Detail & Related papers (2020-03-13T03:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.