Learning Enriched Features for Real Image Restoration and Enhancement
- URL: http://arxiv.org/abs/2003.06792v2
- Date: Wed, 8 Jul 2020 12:58:28 GMT
- Title: Learning Enriched Features for Real Image Restoration and Enhancement
- Authors: Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad
Shahbaz Khan, Ming-Hsuan Yang, Ling Shao
- Abstract summary: convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
- Score: 166.17296369600774
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the goal of recovering high-quality image content from its degraded
version, image restoration enjoys numerous applications, such as in
surveillance, computational photography, medical imaging, and remote sensing.
Recently, convolutional neural networks (CNNs) have achieved dramatic
improvements over conventional approaches for image restoration task. Existing
CNN-based methods typically operate either on full-resolution or on
progressively low-resolution representations. In the former case, spatially
precise but contextually less robust results are achieved, while in the latter
case, semantically reliable but spatially less accurate outputs are generated.
In this paper, we present a novel architecture with the collective goals of
maintaining spatially-precise high-resolution representations through the
entire network and receiving strong contextual information from the
low-resolution representations. The core of our approach is a multi-scale
residual block containing several key elements: (a) parallel multi-resolution
convolution streams for extracting multi-scale features, (b) information
exchange across the multi-resolution streams, (c) spatial and channel attention
mechanisms for capturing contextual information, and (d) attention based
multi-scale feature aggregation. In a nutshell, our approach learns an enriched
set of features that combines contextual information from multiple scales,
while simultaneously preserving the high-resolution spatial details. Extensive
experiments on five real image benchmark datasets demonstrate that our method,
named as MIRNet, achieves state-of-the-art results for a variety of image
processing tasks, including image denoising, super-resolution, and image
enhancement. The source code and pre-trained models are available at
https://github.com/swz30/MIRNet.
Related papers
- Multi-Scale Representation Learning for Image Restoration with State-Space Model [13.622411683295686]
We propose a novel Multi-Scale State-Space Model-based (MS-Mamba) for efficient image restoration.
Our proposed method achieves new state-of-the-art performance while maintaining low computational complexity.
arXiv Detail & Related papers (2024-08-19T16:42:58Z) - Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
Super-resolution algorithms transform one or more sets of low-resolution images captured from the same scene into high-resolution images.
The extraction of image features and nonlinear mapping methods in the reconstruction process remain challenging for existing algorithms.
The objective is to recover high-quality, high-resolution images from low-resolution images.
arXiv Detail & Related papers (2024-07-18T06:50:39Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - High-Quality Pluralistic Image Completion via Code Shared VQGAN [51.7805154545948]
We present a novel framework for pluralistic image completion that can achieve both high quality and diversity at much faster inference speed.
Our framework is able to learn semantically-rich discrete codes efficiently and robustly, resulting in much better image reconstruction quality.
arXiv Detail & Related papers (2022-04-05T01:47:35Z) - Multi-Stage Progressive Image Restoration [167.6852235432918]
We propose a novel synergistic design that can optimally balance these competing goals.
Our main proposal is a multi-stage architecture, that progressively learns restoration functions for the degraded inputs.
The resulting tightly interlinked multi-stage architecture, named as MPRNet, delivers strong performance gains on ten datasets.
arXiv Detail & Related papers (2021-02-04T18:57:07Z) - Multi-image Super Resolution of Remotely Sensed Images using Residual
Feature Attention Deep Neural Networks [1.3764085113103222]
The presented research proposes a novel residual attention model (RAMS) that efficiently tackles the multi-image super-resolution task.
We introduce the mechanism of visual feature attention with 3D convolutions in order to obtain an aware data fusion and information extraction.
Our representation learning network makes extensive use of nestled residual connections to let flow redundant low-frequency signals.
arXiv Detail & Related papers (2020-07-06T22:54:02Z) - Multimodal Deep Unfolding for Guided Image Super-Resolution [23.48305854574444]
Deep learning methods rely on training data to learn an end-to-end mapping from a low-resolution input to a high-resolution output.
We propose a multimodal deep learning design that incorporates sparse priors and allows the effective integration of information from another image modality into the network architecture.
Our solution relies on a novel deep unfolding operator, performing steps similar to an iterative algorithm for convolutional sparse coding with side information.
arXiv Detail & Related papers (2020-01-21T14:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.