Multi-Scale Representation Learning for Image Restoration with State-Space Model
- URL: http://arxiv.org/abs/2408.10145v1
- Date: Mon, 19 Aug 2024 16:42:58 GMT
- Title: Multi-Scale Representation Learning for Image Restoration with State-Space Model
- Authors: Yuhong He, Long Peng, Qiaosi Yi, Chen Wu, Lu Wang,
- Abstract summary: We propose a novel Multi-Scale State-Space Model-based (MS-Mamba) for efficient image restoration.
Our proposed method achieves new state-of-the-art performance while maintaining low computational complexity.
- Score: 13.622411683295686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image restoration endeavors to reconstruct a high-quality, detail-rich image from a degraded counterpart, which is a pivotal process in photography and various computer vision systems. In real-world scenarios, different types of degradation can cause the loss of image details at various scales and degrade image contrast. Existing methods predominantly rely on CNN and Transformer to capture multi-scale representations. However, these methods are often limited by the high computational complexity of Transformers and the constrained receptive field of CNN, which hinder them from achieving superior performance and efficiency in image restoration. To address these challenges, we propose a novel Multi-Scale State-Space Model-based (MS-Mamba) for efficient image restoration that enhances the capacity for multi-scale representation learning through our proposed global and regional SSM modules. Additionally, an Adaptive Gradient Block (AGB) and a Residual Fourier Block (RFB) are proposed to improve the network's detail extraction capabilities by capturing gradients in various directions and facilitating learning details in the frequency domain. Extensive experiments on nine public benchmarks across four classic image restoration tasks, image deraining, dehazing, denoising, and low-light enhancement, demonstrate that our proposed method achieves new state-of-the-art performance while maintaining low computational complexity. The source code will be publicly available.
Related papers
- Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - VmambaIR: Visual State Space Model for Image Restoration [36.11385876754612]
We propose VmambaIR, which introduces State Space Models (SSMs) with linear complexity into comprehensive image restoration tasks.
VmambaIR achieves state-of-the-art (SOTA) performance with much fewer computational resources and parameters.
arXiv Detail & Related papers (2024-03-18T02:38:55Z) - Unified-Width Adaptive Dynamic Network for All-In-One Image Restoration [50.81374327480445]
We introduce a novel concept positing that intricate image degradation can be represented in terms of elementary degradation.
We propose the Unified-Width Adaptive Dynamic Network (U-WADN), consisting of two pivotal components: a Width Adaptive Backbone (WAB) and a Width Selector (WS)
The proposed U-WADN achieves better performance while simultaneously reducing up to 32.3% of FLOPs and providing approximately 15.7% real-time acceleration.
arXiv Detail & Related papers (2024-01-24T04:25:12Z) - Prompt-based Ingredient-Oriented All-in-One Image Restoration [0.0]
We propose a novel data ingredient-oriented approach to tackle multiple image degradation tasks.
Specifically, we utilize a encoder to capture features and introduce prompts with degradation-specific information to guide the decoder.
Our method performs competitively to the state-of-the-art.
arXiv Detail & Related papers (2023-09-06T15:05:04Z) - All-in-one Multi-degradation Image Restoration Network via Hierarchical
Degradation Representation [47.00239809958627]
We propose a novel All-in-one Multi-degradation Image Restoration Network (AMIRNet)
AMIRNet learns a degradation representation for unknown degraded images by progressively constructing a tree structure through clustering.
This tree-structured representation explicitly reflects the consistency and discrepancy of various distortions, providing a specific clue for image restoration.
arXiv Detail & Related papers (2023-08-06T04:51:41Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Restormer: Efficient Transformer for High-Resolution Image Restoration [118.9617735769827]
convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data.
Transformers have shown significant performance gains on natural language and high-level vision tasks.
Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks.
arXiv Detail & Related papers (2021-11-18T18:59:10Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.